
Sensible TableView
3.0

FIRST EDITION

INTRODUCTION TO

© 2012, Sensible Cocoa. Edition 1.1

Sensible Cocoa®, Sensible TableView®, and all other trademarks used in this book are the properties of their respective owners.
www.sensiblecocoa.com

i

CHAPTER 1

Getting Started

Congratulations on choosing Sensible Ta-
bleView for your next project, you are
definitely in for a treat!

In this chapter, you will be taken through
a quick journey of what the Sensible Ta-
bleView framework has to offer. You will
also be given a tutorial on how to set up
STV and get your applications up and run-
ning in a matter minutes.

SECTION 1

What is Sensible
TableView?

Sensible TableView (STV) is a framework that drastically
simplifies iOS table view development, while focusing on deliv-
ering a simple and enjoyable developer experience. Focusing
on such a great developer experience is perhaps one of the key
reasons why STV has become so popular in such a short pe-
riod of time.

Another key reason behind STV’s popularity has been un-
doubtedly the unprecedented amount of time it saves its us-
ers. Based on countless user testimonials and feedback, we
have found that developers save on average about 70% of their
development time when they start using STV in their applica-
tions. What this means for you is that an app that would nor-
mally take weeks or even months for you to develop alone, can
now be conceived in just a matter of days when you use STV.

And this is only half the story. As any experienced developer
would definitely agree, the real devil is in the application’s

maintenance. It is here where STV becomes really indispensa-
ble. Since STV keeps your code very short, simple and straight
forward, maintenance suddenly becomes an enjoyable trivial
task.

So what’s the catch, you may ask? Fortunately, there is no
catch. Since day one, it has been integral to STV’s architecture
to fully expose everything the iOS framework has to offer. This
means that you do not loose any flexibility while using STV.
Every single thing that can be done with normal table views
can still be done with STV, only a lot easier. Have a custom UI-
TableView subclass? No problem, STV flawlessly integrates
with that. A custom cell? Even better! Custom view control-
lers? STV’s bread and butter!

All this probably sounds too good to be true, and you should
definitely not take our word for it! In the next few chapters,
you will get to experience first hand what it means to have
STV be part of your project. Whether you are developing a sim-
ple Core Data application, dealing with complex web services
or even iCloud, you will get to see how STV elegantly reduces
the amount of work you have to do to an absolute bare mini-
mum!

3

SECTION 2

What’s new in STV 3.0?

STV 3.0 has been by far the largest upgrade STV has had to
date, perhaps with more new features than all the previous up-
grades combined! One serious challenge with adding all these
new features was maintaining STV’s most important (and
much beloved) core value: simplicity. We understood how in-
tegral this core value is to STV, and we had zero tolerance for
any solution that undermined this value even by the slightest
amount.

After a lot of research, we ended up virtually reimplementing
STV from the ground up. We used everything that we had
learned from our users since STV’s inception, and we made
sure to stick to all our initial core values that had made STV
popular in the first place. We also did one more thing that was
not available in any previous STV version: framework exten-
sions. With framework extensions, STV users can now easily
extend STV itself to provide any functionality that is not cur-
rently available out of the box. As a matter of fact, we used

STV 3.0’s framework extensions ourselves to add features
such as Core Data, web services, and iCloud integration! You
can read more on this exciting new functionality in the chap-
ter titled: ‘Extending STV’.

Fortunately, all this hard work really paid off at the end. The
feedback we got from everyone that had the chance to experi-
ence STV 3.0 was simply extraordinary! Not only were they
blown away by the new features, but they almost unanimously
raved about the fact that STV 3.0 is now even easier to use,
sometimes by several orders of magnitude!

4

The following is a non-comprehensive list of STV 3.0’s most
notable new features (all new features will be discussed in
great detail throughout the book):

• Web Service Integration. STV now binds and con-
sumes web services exactly as it used to bind to classes
and Core Data entities. It now even fully integrates with
parse.com to deliver the ultimate ease of use in web serv-
ice application development.

• iCloud Integration. STV 3.0 supports key-value bind-
ing to iCloud out of the box. Deploy the same app on sev-
eral devices and watch as the data automatically syn-
chronize between them as soon as it’s changed!

• User-Defaults Integration. Using the new SCUserDe-
faultsDefinition and a single line of code, you can now
use STV to read and write data to the application’s user
defaults.

• Asynchronous Data Loading. STV 3.0 now supports
batched loading from arrays, Core Data, web services,
and even your own custom framework extensions!

• Themes. As demonstrated with our bundled sample ap-
plication, you can now style your application using CSS-
like styling via theme files. To make things even easier
f o r y o u , w e ’ v e m a d e a n a g r e e m e n t w i t h
AppDesignVault.com to create STV-ready theme files
for their designs. Now all you need is place a single line

of code and have your whole application styled! (we’ve
also bundled several free themes with the STV package).

• Actions. Actions will simply revolutionize everything
all over again. By virtually eliminating the need for us-
ing delegates, customizing STV using actions delivers un-
precedented clarity and ease of use.

• Dynamic Expand-Collapse Sections. Sections can
now dynamically expand and collapse.

• Framework extensions. Framework extensions open
the door wide open for you to extend STV’s core func-
tionality. Think of framework extensions as STV plug-
ins.

• Data Fetch Options. You can now fully control how
data is fetched, no matter where it’s being fetched from.
This includes sorting, filtering, and the use of NSPredi-
cate where applicable.

• Enhanced SCViewController and SCTableView-
Controller. By popular demand, SCViewController
and SCTableViewController have been redesigned for
your own use (as opposed to earlier STV versions where
they were only intended to be used internally by STV).
As you will see in the following chapters (and in the bun-
dled samples), these view controllers are extremely con-
venient when used with STV.

5

• Additional Special Views. Special views such as
Pull-to-Refresh and InputAccessoryView now come out-
of-the-box.

• Additional Special Cells. We’ve added new special
cell such as the Expand-Collapse cell, and the Load-
More cell.

• Much, much more!

6

SECTION 3

Setting up STV

As you’ll see in this section, STV 3.0 is fairly simple and
straight forward to set up. Once you follow the next few steps,
you should have your STV app up and running in virtually no
time.

STV 3.0 minimum requirements

• Xcode 4.3 or later. It is always recommended to use the
latest Xcode version, so make sure you always get the lat-
est updates from the Mac App Store.

• iOS 4.0 or later deployment target. Please note that ap-
plications developed with STV 3.0 will not work on de-
vices using iOS versions prior to 4.0. Latest surveys
show that more than 70% of all devices have upgraded
to iOS 5.0, and about 18% are using iOS 4.0.

STV 3.0 formats

 STV 3.0 can be used in your project in two basic formats:

• As a static framework. Using STV as a static frame-
work is very simple, and should generally be your for-
mat of choice.

• As source code. Using STV in source code format re-
quires a few more steps than when using a static frame-
work, but may prove really useful if you need to trace
into STV’s code. It is also recommended (but not re-
quired) to use this format when developing custom STV
framework extensions.

STV’s source code is only available with the STV Pro version.

7

Using STV as a static framework

1. Launch Xcode, then create a new project using File-
>New->Project...

2. You can now choose any project template you wish
from the iOS application tab. Since STV generally
doesn’t need most of the additional code provided by
these templates, using the “Empty Application” tem-
plate is often the most convenient option to use.

3. In the next form, enter “STV App” as the project
name, then set the other options as shown below.
Make sure to check “Use Core Data” if your project is
a Core Data application.

8

It is worth noting here that STV fully supports using Story-
boards whenever you wish to do so. You must be careful how-
ever because by using storyboards, you can only deploy your
application on iOS 5.0 devices. This is why we will usually be
omitting storyboards in our examples as long as we keep sup-
porting iOS 4.0 as a minimum deployment target. Since STV
typically auto-generates all detail views for you, you should
have very little need for storyboards anyways.

Also, STV fully supports working with non Automatic Refer-
ence Counting (ARC) projects, but there is generally no rea-
son for you to not use ARC unless you’re migrating an old
project.

4. Choose a place to save your project, the click “Cre-
ate”.

5. Right-click on the Frameworks group, then select
Add files to “STV App”…

6. Now choose the ‘SensibleTableView.framework’ file
from your STV package (should be under the ‘Static
FrameWorks’ folder), then click on the “Add” button.
It is generally recommended to leave the “Copy items
into destination group’s folder” option unchecked for

easier upgrades to future STV versions. Once you

click the Add button, you should now see the Sensible
TableView framework under the frameworks group.

7. For your convenience, you should now import the
<SensibleTableView/SensibleTableView.h> file to

9

your prefix headers file. This will save you the need to
keep importing it in every file that needs to use STV.
Xcode usually keeps the prefix headers file under the
“Supporting Files” group. Navigate to this group, se-
lect the “STV App-prefix.pch” file, then add the follow-
ing statement to the file:

8. Now let’s add a root view controller to our project.
Right-click on the “STV App” group, then select “New
file...”. From the file templates, choose “Objective-C
class” then click ‘Next’. Enter ‘RootViewController’
for the class name field, then enter ‘SCTableViewCon-
troller’ in the Subclass of field. There is usually no
need to select an XIB file when working with SCTa-
bleViewController subclasses.

9. Click “Next”, then click the “Create” button to save
the file.

10. Repeat steps 8 & 9 to create an iPad detail view con-
troller. Call it ‘iPadDetailViewController’.

11. Finally, navigate to AppDelegate.m and modify it to
use the newly created view controllers and you should
be all done! Your AppDelegate.m should look like the
code below.

10

#import <SensibleTableView/SensibleTableView.h>

It is perfectly fine to use a normal UITableViewController
here instead of STV’s own SCTableViewController. However,
SCTableViewController makes your life much easier by auto-
matically creating an STV model and connecting it to the
view controller’s table view. More on STV’s view controllers
in the next chapter.

Congratulations! Your project is now set up and you’re
ready to start unleashing STV’s magic!

11

#import "AppDelegate.h"

#import "RootViewController.h"
#import "iPadDetailViewController.h"

@implementation AppDelegate

@synthesize window = _window;

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]];

 RootViewController *rootViewController = [[RootViewController alloc]
 initWithStyle:UITableViewStyleGrouped];
 UINavigationController *rootNavController =
 [[UINavigationController alloc]
 initWithRootViewController:rootViewController];

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone)
 {
 self.window.rootViewController = rootNavController;
 }
 else
 {
 iPadDetailViewController *detailViewController =
 [[iPadDetailViewController alloc]
 initWithStyle:UITableViewStyleGrouped];
 UINavigationController *detailNavController =
 [[UINavigationController alloc]
 initWithRootViewController:detailViewController];

 // Connect the master model to the detail model
 rootViewController.tableViewModel.detailViewController =
 detailViewController;

 UISplitViewController *splitViewController =
 [[UISplitViewController alloc] init];
 splitViewController.viewControllers =
 [NSArray arrayWithObjects:rootNavController,
 detailNavController, nil];
 self.window.rootViewController = splitViewController;
 }
 [self.window makeKeyAndVisible];
 return YES;
}

Using STV in source code format

1. Follow steps 1 t0 4 from ‘Using STV as a static frame-
work’.

2. Right-click on the STV App project, then select Add
files to “STV App”…

3. Now choose the ‘SensibleTableView.xcodeproj’ file
from your STV package (should be under the ‘Source

Code’ folder), then click on the “Add” button. If you
wish for your project to have its own separate copy of
the framework, select the “Copy items into destina-
tion group’s folder” option.

12

4. Select the “STV App” target, then select “Build Phases”.

5. Expand the “Target Dependencies” tab, then click the + but-
ton to add the ‘SensibleTableView’ target.

6. Similarly, expand the “Link Binary With Libraries” tab,
then click the + button to add the ‘libSensibleTableView.a’
static library.

7. Follow steps 7 t0 11 from ‘Using STV as a static frame-
work’, then you should be all done.

13

SECTION 4

Exploring the possibilities

Having got the set up out of the way, we will now start explor-
ing what STV has to offer. Even though we’ll be just scratching
the surface here, this should give you a very good start.

Let’s first start by verifying that you’ve got STV set up cor-
rectly as per the steps given in the Setting up STV section. If
you don’t have the “STV App” project already open, go ahead
and open it in Xcode. Make sure that the selected target de-
vice is the iPhone simulator.

Now navigate to the RootViewController.m file, then add the
following code:

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSMutableArray *items = [NSMutableArray arrayWithObjects:@"One",
@"Two", @"Three!", nil];
 SCArrayOfStringsSection *stringsSection = [SCArrayOfStringsSection
sectionWithHeaderTitle:@"Strings Section" items:items];

 [self.tableViewModel addSection:stringsSection];
}

From Xcode’s menu, choose Product->Run. If everything has
been set up correctly, you should now see the following:

14

Exploring Object Binding

One of the most powerful features of STV is its ability to “un-
derstand” your objects, then create a user interface that resem-
bles their property structure. Not only will STV create cells
that resemble your object’s properties, but it will also auto-
matically create detail views for any detail objects owned by
the main object. Furthermore, STV will also monitor any in-
put the user provides and will sync all that back to its respec-
tive properties.

To see all this in action, we’ll be creating a simple task manage-
ment application. Let’s start by adding a Task object to the
STV App project. From Xcode, choose File->New->Objective-
C Class. Name the class ‘Task’, and make sure it descends
from NSObject.

After saving the file, navigate to Task.h and add the following
properties:

@interface Task : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *description;
@property (nonatomic, strong) NSString *category;
@property (nonatomic, strong) NSDate *dueDate;
@property (nonatomic, assign) BOOL completed;

@end

Then complete the implementation in Task.m

@implementation Task

@synthesize name, description, category, dueDate, completed;

- (id)init
{
 self = [super init];
 if(self)
 {
 name = nil;
 description = nil;
 category = nil;
 dueDate = nil;
 completed = FALSE;
 }
 return self;
}

@end

Now it’s time to tell STV about our new class. Using a class
called SCClassDefinition, we will be able to fully describe the
Task class to STV. We will be studying class definitions later
on in great detail, but for the time being, just navigate to
iPhoneRootViewController.m and add the following code:

15

Now run the app. If you’ve correctly followed the earlier steps,
the simulator should look like this:

Feel free to play around with the app. As you start interacting
with the UI, you will quickly notice the following:

• All properties have been automatically renamed in a user
friendly manner. We will see later how to fully customize
this behavior.

• While STV displays a normal text keyboard for the name, de-
scription and category properties, it automatically detects
that dueDate is a date property and displays a date picker in-
stead.

16

#import "Task.h"

@implementation iPhoneRootViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Create the Task definition
 SCClassDefinition *taskDef = [SCClassDefinition
definitionWithClass:[Task class]
propertyNamesString:@"name;description;category;dueDate;completed"]
;

 // Create an instance of the Task object
 Task *myTask = [[Task alloc] init];

 // Create the section(s) for the task object
 [self.tableViewModel generateSectionsForObject:myTask
withDefinition:taskDef];
}

@end

• STV detects that ‘completed’ is a BOOL property and auto-
matically generates a switch cell to match it.

• STV automatically (and optionally) provides a keyboard ac-
cessory view with a Previous and Next buttons, enabling the
user to easily move between the different text fields.

Now even though STV did the best it could to detect what type
of cells to generate for each property, sometimes it is neces-
sary to further extend all this to satisfy our application’s re-
quirements. For example, we want the description to become
a resizable text view instead of a simple text field cell. Also, we
want to select a category from a predefined list, instead of typ-
ing it each time.

Fortunately, STV makes it really easy to perform these cus-
tomizations by using Property Definitions. As soon as we cre-
ated the Task class definition, STV automatically created a
property definition for each of the provided properties. All we
need is simply retrieve the property definition and change its
t y p e a n d / o r a t t r i b u t e s . N a v i g a t e t o
iPhoneRootViewController.m and modify the code as follows:

#import "Task.h"

@implementation iPhoneRootViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Create the Task definition
 SCClassDefinition *taskDef = [SCClassDefinition
definitionWithClass:[Task class]
propertyNamesString:@"name;description;category;dueDate;completed"];
 SCPropertyDefinition *descPropertyDef = [taskDef
propertyDefinitionWithName:@"description"];
 descPropertyDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *categoryPropertyDef = [taskDef
propertyDefinitionWithName:@"category"];
 categoryPropertyDef.type = SCPropertyTypeSelection;
 NSArray *categoryItems = [NSArray arrayWithObjects:@"Home",
@"Work", @"Other", nil];
 categoryPropertyDef.attributes = [SCSelectionAttributes
attributesWithItems:categoryItems allowMultipleSelection:NO
allowNoSelection:NO];

 // Create an instance of the Task object
 Task *myTask = [[Task alloc] init];

 // Create the section(s) for the task object
 [self.tableViewModel generateSectionsForObject:myTask
withDefinition:taskDef];
}

@end

Now run the app and try playing around with the new controls
added. Note that the category property now automatically gen-
erates a selection detail view for you with items to choose
from.

17

Finally, lets organize the UI into separate categories. STV eas-
ily allows us to do so right from within the property names
string in the class definition. Just change the names string to
look like this:

Now run the app and you should get the following setup.

18

SCClassDefinition *taskDef = [SCClassDefinition
definitionWithClass:[Task class] propertyNamesString:@"Task
Details:(name,description,category,dueDate);Task
Status:(completed)"];

As useful as the current app is, it’s rarely the case where a task
management app has only one task! Amazingly enough, add-
ing multiple task functionality to our application actually re-
quires very little work on our part, full with the ability to add/
edit/delete/rearrange tasks! Using a class called SCArrayOfOb-
jectsSection, we’ll have STV take care of everything for us one
more time. Modify iPhoneRootViewController.m as follows:

#import "Task.h"

@implementation iPhoneRootViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Tasks";
 self.navigationBarType = SCNavigationBarTypeAddLeftEditRight;

 // Create the Task definition
 SCClassDefinition *taskDef = [SCClassDefinition
definitionWithClass:[Task class] propertyNamesString:@"Task
Details:(name,description,category,dueDate);Task
Status:(completed)"];
 SCPropertyDefinition *namePropertyDef = [taskDef
propertyDefinitionWithName:@"name"];
 namePropertyDef.required = TRUE;
 SCPropertyDefinition *descPropertyDef = [taskDef
propertyDefinitionWithName:@"description"];
 descPropertyDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *categoryPropertyDef = [taskDef
propertyDefinitionWithName:@"category"];
 categoryPropertyDef.type = SCPropertyTypeSelection;
 NSArray *categoryItems = [NSArray arrayWithObjects:@"Home",
@"Work", @"Other", nil];
 categoryPropertyDef.attributes = [SCSelectionAttributes
attributesWithItems:categoryItems allowMultipleSelection:NO
allowNoSelection:NO];

 // Create the Tasks array
 NSMutableArray *tasksArray = [NSMutableArray array];

 // Create the section for the tasks array
 SCArrayOfObjectsSection *tasksSection = [SCArrayOfObjectsSec-
tion sectionWithHeaderTitle:nil items:tasksArray
itemsDefinition:taskDef];
 tasksSection.addButtonItem = self.addButton;
 tasksSection.placeholderCell = [SCTableViewCell
 cellWithText:@"No tasks yet!"
 textAlignment: NSTextAlignmentCenter];

 [self.tableViewModel addSection:tasksSection];
}

19

Finally, we’d like STV to take care of a relationship between
our Task class and another detail class, like a list of task com-
pletion steps for instance. Let’s first create a new class called
TaskStep and implement it as follows:

TaskStep.h

TaskStep.m

@implementation TaskStep

@synthesize name, description;

- (id)init
{
 self = [super init];
 if(self)
 {
 name = nil;
 description = nil;
 }
 return self;
}

@end

Now modify the Task class as follows:

@interface Task : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *description;
@property (nonatomic, strong) NSString *category;
@property (nonatomic, strong) NSDate *dueDate;
@property (nonatomic, assign) BOOL completed;
@property (nonatomic, readonly) NSMutableArray *taskSteps;

@end

@implementation Task

@synthesize name, description, category, dueDate, completed, task-
Steps;

- (id)init
{
 self = [super init];
 if(self)
 {
 name = nil;
 description = nil;
 category = nil;
 dueDate = nil;
 completed = FALSE;
 taskSteps = [NSMutableArray array];
 }
 return self;
}

@end

Important: the taskSteps array must be declared as an
NSMutableArray in order for STV to be able to add and re-
move task steps.

20

@interface TaskStep : NSObject

@property (nonatomic, strong) NSString *name;
@property (nonatomic, strong) NSString *description;

@end

Moving back to iPhoneRootViewController.m, we will now
create a new definition for the TaskStep class, then tell our
taskDef about it using property attributes:

#import "Task.h"
#import "TaskStep.h"

@implementation iPhoneRootViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Tasks";
 self.navigationBarType = SCNavigationBarTypeAddLeftEditRight;

 // Create the TaskStep definition
 SCClassDefinition *taskStepDef = [SCClassDefinition
definitionWithClass:[TaskStep class]
autoGeneratePropertyDefinitions:YES];
 [taskStepDef propertyDefinitionWithName:@"description"].type =
SCPropertyTypeTextView;

 // Create the Task definition
 SCClassDefinition *taskDef = [SCClassDefinition
definitionWithClass:[Task class] propertyNamesString:@"Task
Details:(name,description,category,dueDate, taskSteps);Task
Status:(completed)"];
 SCPropertyDefinition *namePropertyDef = [taskDef
propertyDefinitionWithName:@"name"];
 namePropertyDef.required = TRUE;
 SCPropertyDefinition *descPropertyDef = [taskDef
propertyDefinitionWithName:@"description"];
 descPropertyDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *categoryPropertyDef = [taskDef
propertyDefinitionWithName:@"category"];
 categoryPropertyDef.type = SCPropertyTypeSelection;
 NSArray *categoryItems = [NSArray arrayWithObjects:@"Home",
@"Work", @"Other", nil];
 categoryPropertyDef.attributes = [SCSelectionAttributes
attributesWithItems:categoryItems allowMultipleSelection:NO
allowNoSelection:NO];
 SCPropertyDefinition *taskStepsRelDef = [taskDef
propertyDefinitionWithName:@"taskSteps"];
 taskStepsRelDef.title = @"Steps";
 taskStepsRelDef.type = SCPropertyTypeArrayOfObjects;

Running the app, you should now find that STV has automati-
cally handled all the UI related with the relationship:

21

taskStepsRelDef.attributes = [SCArrayOfObjectsAttributes
attributesWithObjectDefinition:taskStepDef allowAddingItems:YES
allowDeletingItems:YES allowMovingItems:YES];

 // Create the Tasks array
 NSMutableArray *tasksArray = [NSMutableArray array];

 // Create the sectionfor the tasks array
 SCArrayOfObjectsSection *tasksSection = [SCArrayOfObjectsSec-
tion sectionWithHeaderTitle:nil items:tasksArray
itemsDefinition:taskDef];
 tasksSection.addButtonItem = self.addButton;
 tasksSection.placeholderCell = [SCTableViewCell
cellWithText:@"No tasks yet!" textAlignment: NSTextAlignmentCen-
ter];

 [self.tableViewModel addSection:tasksSection];
}

So far so good, but how would we implement all this on the
iPad? Since there is more screen real estate there, it makes
sense for us to flatten out the UI a bit by displaying the task
details using a detail view controller, instead of pushing a new
view controller as we do on the iPhone. Fortunately again,
STV comes to the rescue by automatically handling the whole
process for us. All we need is place a UISplitViewController
(or any other custom container) as the root view controller,
then set its viewControllers property to a master and a detail
view controllers. We’ll then use the tableViewModel in the
master view controller and assign the detail view controller to
its detailViewController property. If you recall, this is exactly
what we did in the “Setting up STV” section earlier:

AppDelegate.m

22

#import "AppDelegate.h"

#import "RootViewController.h"
#import "iPadDetailViewController.h"

@implementation AppDelegate

@synthesize window = _window;

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen]
 bounds]];

 RootViewController *rootViewController = [[RootViewController alloc]
 initWithStyle:UITableViewStyleGrouped];
 UINavigationController *rootNavController =
 [[UINavigationController alloc]
 initWithRootViewController:rootViewController];

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==
 UIUserInterfaceIdiomPhone)
 {
 self.window.rootViewController = rootNavController;
 }
 else
 {
 iPadDetailViewController *detailViewController =
 [[iPadDetailViewController alloc]
 initWithStyle:UITableViewStyleGrouped];
 UINavigationController *detailNavController =
 [[UINavigationController alloc]
 initWithRootViewController:detailViewController];

 // Connect the master model to the detail model
 rootViewController.tableViewModel.detailViewController =
 detailViewController;

 UISplitViewController *splitViewController =
 [[UISplitViewController alloc] init];
 splitViewController.viewControllers =
 [NSArray arrayWithObjects:rootNavController,
 detailNavController, nil];
 self.window.rootViewController = splitViewController;
 }
 [self.window makeKeyAndVisible];
 return YES;
}

If you’ve set up everything correctly, all you need is select the
iPad simulator as the iOS device and run the app.

Viola!

23

Important: Since we’re now using the same RootViewController class
for both the iPhone and iPad, it is important that we provide the cor-
rect interface orientation in the ‘shouldAutorotateToInterfaceOrienta-
tion’ method. Fortunately, SCViewController/SCTableViewController
will automatically take care of this as long as you don’t have this
method implemented. To make sure SCTableViewController is auto-
matically handling this, make sure to search RootViewController.m
for the ‘shouldAutorotateToInterfaceOrientation’ method and re-
move it if it has been placed there by Xcode’s template.

Exploring Core Data Binding

It is no secret that STV’s Core Data Binding is one of the most
sought-after features of the whole STV framework. While us-
ing Object Binding gets you to have STV automatically handle
all the UI generation, you’re still very much responsible for
persisting all the objects yourself. With Core Data however,
the whole object graph is automatically persisted on your be-
half (typically to an SQLite database). Combine this functional-
ity with STV and you can have a full fledged application up
and running in literally a matter of minutes!

In this section, we’ll be recreating the same sample we created
in the Object Binding section, but using Core Data. We’ll start
by creating a project based on the template created in Section
3: Setting up STV. Since we’ll be using Core Data, you should
be checking the ‘Use Core Data’ option in step number 3. Call
the project ‘STV Core Data’ and save it to the location of your
choice.

Next, we’ll need to add the STV+CoreData framework exten-
sion to our project.

To add STV+CoreData, right-click on the Frameworks group,
then select ‘Add files to STV CoreData…’. From your package
files, select the ‘STV+CoreData.framework’ file and click Add.
This adds STV+CoreData as a static framework. If you need to
add it in source code format, please follow the same steps laid
out earlier in Section 3 for setting up SensibleTableView in
source code format. Finally, add the following statement to
the ‘STV Core Data-Prefix.pch’ prefix header file:

Your project should now look like this:

24

In STV 3.0, the main SensibleTableView framework only has the core
STV functionality, and all other features have been implemented as
‘framework extensions’. This keeps your project’s size minimal, with
only the features you need added. In addition, this lays out the
ground for STV to be extremely extensible, either by you or by other
third parties providing their own framework extensions for STV.

#import <STV+CoreData/STV+CoreData.h>

Next, let’s add some entities to our Core Data model.

1. Select the ‘STV_Core_Data.xcdatamodeld’ file to have the
model edit appear. Make sure the Data Model inspector is
visible by selecting View->Utilities->Show Data Model In-
spector from Xcode’s menu.

2. Click on the Add Entity button to add a new entity. Name
the new entity ‘TaskEntity’.

3. Click on the ‘+’ button in the Attributes section to add a
new attribute to TaskEntity. Name the new attribute
‘name’, and set its type to String. To have ‘name’ become
a required attribute, uncheck the Optional checkbox in
the Data Model inspector.

4. Add the following attributes to TaskEntity (no need to un-
check Optional for any other attribute):

5. Similarly, add a new Entity called ‘TaskStepEntity’ with
the following attributes:

6. We’ll now establish a 1-to-many relationship between
TaskEntity and TaskStepEntity. With the TaskStepEntity
still selected, click the ‘+’ button in the Relationships sec-
tion to create a new relationship. Name the relationship
‘task’, and select TaskEntity as its Destination entity.
Next, select the TaskStep entity and click the ‘+’ button to
create a new relationship. Name the relationship ‘task-
Steps’, select TaskStepEntity as its destination, and select
task as its inverse relationship. Finally, while taskSteps is
still selected, check the ‘To-Many Relationship’ checkbox.

25

This should be all we need. To make sure you did everything

correctly, click on the graph editor style button and
check that the entities have been correctly set up. Your graph
should look like the following:

Now that we’re done with the Core Data model, the rest
should be even simpler than what we did in Object Binding!

Similarly to our Object Binding sample, we now need to de-
scribe our entities to STV. If you recall, we earlier used a class
called SCClassDefinition to describe object classes. To de-
scribe Core Data entities, we’ll be using another class called
SCEntityDefinition.

Both SCClassDefinition and SCEntityDefinition (in addition to many
other similar classes) are subclasses of the SCDataDefinition abstract
base class. Much more details on that are provided in the next chap-
ter and throughout the rest of the book.

Let’s select RootViewController.m and insert the following
code there:

26

That it, all we need is a single page of code! Note that the code
is almost identical to the one we used in Object Binding, with
the exception of using SCEntityDefinition instead of SCClass-
Definition. Now compile and run the project, and you should
get an identical app to the one we had in Object Binding, only
this time when you exit the app and return back the data is ac-
tually persisted!

Note: When you’re working on the simulator, you should always click
the Home button to properly exit an application. Quitting the simula-
tor without clicking the Home button doesn’t give the app the chance
to persist any data.

27

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Tasks";
 self.navigationBarType = SCNavigationBarTypeAddLeftEditRight;

 NSManagedObjectContext *context = [(id)[UIApplication
sharedApplication].delegate managedObjectContext];

 // Create the TaskStep definition
 SCEntityDefinition *taskStepDef =
 [SCEntityDefinition definitionWithEntityName:@"TaskStepEntity"
 managedObjectContext:context
 propertyNamesString:@"name;details"];
 [taskStepDef propertyDefinitionWithName:@"details"].type =
 SCPropertyTypeTextView;

 // Create the Task definition
 SCEntityDefinition *taskDef =
 [SCEntityDefinition definitionWithEntityName:@"TaskEntity"
 managedObjectContext:context
 propertyNamesString:@"Task Details:(name,desc,category,dueDate,
taskSteps);Task Status:(completed)"];
 SCPropertyDefinition *namePropertyDef = [taskDef
propertyDefinitionWithName:@"name"];
 namePropertyDef.required = TRUE;
 SCPropertyDefinition *descPropertyDef = [taskDef
propertyDefinitionWithName:@"desc"];
 descPropertyDef.title = @"description";
 descPropertyDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *categoryPropertyDef = [taskDef
propertyDefinitionWithName:@"category"];
 categoryPropertyDef.type = SCPropertyTypeSelection;
 NSArray *categoryItems = [NSArray arrayWithObjects:@"Home", @"Work",
@"Other", nil];
 categoryPropertyDef.attributes = [SCSelectionAttributes
attributesWithItems:categoryItems allowMultipleSelection:NO
allowNoSelection:NO];
 SCPropertyDefinition *taskStepsRelDef = [taskDef
propertyDefinitionWithName:@"taskSteps"];
 taskStepsRelDef.title = @"Steps";
 taskStepsRelDef.type = SCPropertyTypeArrayOfObjects;
 taskStepsRelDef.attributes = [SCArrayOfObjectsAttributes
attributesWithObjectDefinition:taskStepDef allowAddingItems:YES
allowDeletingItems:YES allowMovingItems:YES];

 // Create the the tasks section
 SCArrayOfObjectsSection *tasksSection =
 [SCArrayOfObjectsSection sectionWithHeaderTitle:nil
 entityDefinition:taskDef];
 tasksSection.addButtonItem = self.addButton;
 tasksSection.placeholderCell =
 [SCTableViewCell cellWithText:@"No tasks yet!"
 textAlignment: NSTextAlignmentCenter];

 [self.tableViewModel addSection:tasksSection];
}

Exploring Dictionary Binding

Using Dictionary Binding, STV can read and write values di-
rectly from an NSMutableDictionary. This usually proves to
be very useful in some applications where having to create an
object class in order to use STV is simply an overkill.

As always, we’ll start by creating a new project based on the
template created in Section 3: Setting up STV. Now select
RootViewController.m and insert the following code:

Now run the app and you should get the following:

Again, everything goes along the same concepts discussed in
the previous chapters. If you’re already feeling that you got
the hang of STV, then this is a great time to start trying out
some projects on your own!

28

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Dictionary Editor";

 // Define the dictionary using SCDictionaryDefinition
 SCDictionaryDefinition *dictionaryDef =
 [SCDictionaryDefinition
 definitionWithDictionaryKeyNamesString:@"key1;key2;key3"];
 [dictionaryDef propertyDefinitionWithName:@"key2"].type =
SCPropertyTypeSwitch;
 [dictionaryDef propertyDefinitionWithName:@"key3"].type =
SCPropertyTypeSlider;

 // Create some sample data
 NSMutableDictionary *dictionary =
 [NSMutableDictionary dictionary];
 [dictionary setValue:@"Text" forKey:@"key1"];
 [dictionary setValue:[NSNumber numberWithBool:YES]
forKey:@"key2"];
 [dictionary setValue:[NSNumber numberWithFloat:0.7f]
forKey:@"key3"];

 // Generate sections for the dictionary
 [self.tableViewModel generateSectionsForObject:dictionary
withDefinition:dictionaryDef];
}

Exploring Web Service Binding

Web Service Binding was one of the most anticipated new fea-
tures of STV 3.0. The vision was to give STV the ability to
magically bind to web services in very much the same way it
used to bind to objects and Core Data managed objects. In the
following sample, we’ll demonstrate how STV is able to con-
sume a Twitter search web service to retrieve all the tweets
mentioning the #iosdev hashtag. Please note that the sample
natively talks to the web service, and does not use any of the
new iOS 5.0 Twitter APIs to fetch the data.

As always, we’ll start by creating a new project based on the
template created in Section 3: Setting up STV, naming our
new project: “STV WebServices”. Similar to CoreData Bind-
ing, STV’s Web Service Binding functionality comes in a sepa-
rate framework extension called STV+WebServices.

To add STV+WebServices, right-click on the Frameworks
group, then select ‘Add files to STV WebServices…’. From
your package files, select the ‘STV+WebServices.framework’
file and click Add. This adds STV+CoreWebServices as a static
framework. If you need to add it in source code format, please
follow the same steps laid out earlier in Section 3 for setting
up SensibleTableView in source code format. Finally, add the
following statement to the ‘STV WebServices-Prefix.pch’ pre-
fix header file:

At the end of your initial set up, the project should look like
this:

If you had gone through the previous samples or had previ-
ously been using STV, odds are you’re pretty much expecting
what to come next. Along the same lines of all we did before,
we’ll start out by defining Twitter’s ‘search’ web service to
STV. And yes, you guessed it correctly, the definition class is
called SCWebServiceDefinition! Insert the following code into
RootViewController.m:

29

#import <STV+WebServices/STV+WebServices.h>

Running the app should give us the following:

While not being too bad for a half page of code, STV can actu-
ally do a much better job than that. For starters, we’d like to
see the whole tweet in the first screen, as it’s really inconven-
ient to have to tap on each tweet to see the full text. Also, we’d
like to have the user’s avatar image displayed, just like profes-
sional Twitter clients do. Fortunately, both of these features
(and a lot more!) can be achieved using STV’s custom cells fea-
ture.

30

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"#iosdev Search";

 // Create the web service definition for a 'tweet'
 SCWebServiceDefinition *tweetDef = [SCWebServiceDefinition
 definitionWithBaseURL:@"http://search.twitter.com/"
 fetchObjectsAPI:@"search.json" resultsKeyName:@"results"
resultsDictionaryKeyNamesString:@"text;from_user_name;created_at"];
 [tweetDef.fetchObjectsParameters setValue:@"#iosdev" forKey:@"q"];
 [tweetDef.fetchObjectsParameters setValue:@"recent"
forKey:@"result_type"];
 tweetDef.batchSizeParameterName = @"rpp";
 tweetDef.nextBatchURLKeyName = @"next_page";
 SCPropertyDefinition *textPropertyDef = [tweetDef
propertyDefinitionWithName:@"text"];
 textPropertyDef.title = @"Tweet";
 textPropertyDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *userPropertyDef = [tweetDef
propertyDefinitionWithName:@"from_user_name"];
 userPropertyDef.title = @"User";
 userPropertyDef.type = SCPropertyTypeLabel;
 SCPropertyDefinition *tweetedAtPropertyDef = [tweetDef
propertyDefinitionWithName:@"created_at"];
 tweetedAtPropertyDef.title = @"Tweeted At";
 tweetedAtPropertyDef.type = SCPropertyTypeLabel;

 // Enable pull-to-refresh
 self.tableViewModel.enablePullToRefresh = TRUE;

 // Add tweets section
 SCArrayOfObjectsSection *tweetsSection = [SCArrayOfObjectsSection
sectionWithHeaderTitle:nil webServiceDefinition:tweetDef batchSize:7];
 tweetsSection.itemsAccessoryType = UITableViewCellAccessoryNone;
 [self.tableViewModel addSection:tweetsSection];
}

http://search.twitter.com
http://search.twitter.com

In this sample, we’ll be creating the custom cell using Inter-
face Builder. From Xcode’s menu, select File->New->File…
Now select the Empty XIB document template:

Press Next, then press Next again selecting iPhone as the de-
vice family. Finally, name the XIB file as TweetCell.xib and
click Create.

Xcode should now have the new TweetCell.xib file selected
and an empty Interface Builder designer should be loaded.
Now add the cell by following the next steps:

1. Drag a Table View Cell from Object Library into the
empty canvas (make sure the Object Library is displayed
by clicking View->Utilities->Show Object Library).

2. Set the cell’s class to SCCustomCell from the Identity In-
spector.

3. From the Object Library, drag an Image View and two La-
bels into the cell. Resize the cell to an initial height of 53
(cell will later auto resize to fit contents) to make it easier
to layout the controls. Set the text of one of the labels to
User, and the other to Tweet. These are just placeholders
to help us identify the labels and have no other use. Now
set the Tag value (from Attributes Inspector) of the Image
View, User Label, and Tweet Label to 1, 2, and 3 respec-
tively. Later on, we’ll be using these tags to have STV bind
the data to these controls.

4. Rearrange the controls to look like the following:

31

Make sure the both labels’ width takes the whole width of the
cells. Since we want STV to autoresize the Tweet Label depend-
ing on the text it holds, we should set its Line Breaks to ‘Word
Wrap’ and Lines to zero (indicating that it should resize indefi-
nitely).

All we need now is to tell the tweetsSection to use our new cus-
tom cell instead of its default cell. Change the code in
RootViewController.m to the following:

32

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"#iosdev Search";

 // Create the web service definition for a 'tweet'
 SCWebServiceDefinition *tweetDef = [SCWebServiceDefinition
 definitionWithBaseURL:@"http://search.twitter.com/"
 fetchObjectsAPI:@"search.json" resultsKeyName:@"results"
resultsDictionaryKeyNamesString:@"text;from_user_name;created_at"];
 [tweetDef.fetchObjectsParameters setValue:@"#iosdev" forKey:@"q"];
 [tweetDef.fetchObjectsParameters setValue:@"recent"
forKey:@"result_type"];
 tweetDef.batchSizeParameterName = @"rpp";
 tweetDef.nextBatchURLKeyName = @"next_page";
 SCPropertyDefinition *textPropertyDef = [tweetDef
propertyDefinitionWithName:@"text"];
 textPropertyDef.title = @"Tweet";
 textPropertyDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *userPropertyDef = [tweetDef
propertyDefinitionWithName:@"from_user_name"];
 userPropertyDef.title = @"User";
 userPropertyDef.type = SCPropertyTypeLabel;
 SCPropertyDefinition *tweetedAtPropertyDef = [tweetDef
propertyDefinitionWithName:@"created_at"];
 tweetedAtPropertyDef.title = @"Tweeted At";
 tweetedAtPropertyDef.type = SCPropertyTypeLabel;

 // Enable pull-to-refresh
 self.tableViewModel.enablePullToRefresh = TRUE;

 // Add tweets section
 SCArrayOfObjectsSection *tweetsSection = [SCArrayOfObjectsSection
sectionWithHeaderTitle:nil webServiceDefinition:tweetDef batchSize:7];
 tweetsSection.itemsAccessoryType = UITableViewCellAccessoryNone;
 tweetsSection.sectionActions.cellForRowAtIndexPath =
^SCCustomCell*(SCArrayOfItemsSection *itemsSection, NSIndexPath *index-
Path)
 {
 SCCustomCell *customCell = [SCCustomCell cellWithText:nil
objectBindingsString:@"1:profile_image_url;2:from_user_name;3:text"
nibName:@"TweetCell"];

 return customCell;
 };

 [self.tableViewModel addSection:tweetsSection];
}

http://search.twitter.com
http://search.twitter.com

Now run the app and it should look like the following:

Much better! It’s amazing how ridiculously simple STV makes
developing such an app look like!

33

Exploring Parse.com Binding

To extend Web Service Binding even further, STV 3.0 fully in-
tegrates with Parse.com, which is an amazing service that en-
ables you to easily create server-side web services. Registering
is free, so if you haven’t already registered, go to
http://www.parse.com and create an account.

Once you’ve done that, we’ll be exploring this service by creat-
ing a version of our beloved Tasks sample. Start by logging
into your parse.com account, then create a new class called
Task. Once you’ve done that, add the columns called name, de-
scription, category and active to your class as follows:

Now make sure you get back to the Dashboard and get a copy
of your Application ID and REST API Key, as you’ll be need-
ing those while setting up STV.

Your Task web service should now be ready for STV to commu-
nicate with. Start by creating a new STV project based on the
Exploring Web Service Binding section. Now select
RootViewController.m and insert the following code:

Compile and run the app, which should look very similar to
the ones we created in the Object Binding and Core Data Bind-
ing sections. Now try adding some tasks and return back to
your parse.com Data Browser. If everything has been set up
correctly, you should find all the added tasks there!

34

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.navigationBarType = SCNavigationBarTypeAddLeftEditRight;

 SCParseComDefinition *taskDef = [SCParseComDefinition
 definitionWithClassName:@"Task"
 columnNamesString:@"name;description;category;active"
 applicationId:@"your_application_id"
 restAPIKey:@"your_rest_api_key"];
 SCPropertyDefinition *descPDef = [taskDef
propertyDefinitionWithName:@"description"];
 descPDef.type = SCPropertyTypeTextView;
 SCPropertyDefinition *categoryPDef = [taskDef
propertyDefinitionWithName:@"category"];
 categoryPDef.type = SCPropertyTypeSelection;
 categoryPDef.attributes = [SCSelectionAttributes
attributesWithItems:[NSArray arrayWithObjects:@"Home", @"Work",
@"Other", nil] allowMultipleSelection:NO allowNoSelection:NO];
 SCPropertyDefinition *activePDef = [taskDef
propertyDefinitionWithName:@"active"];
 activePDef.type = SCPropertyTypeSwitch;

 SCArrayOfObjectsSection *tasksSection = [SCArrayOfObjectsSection
sectionWithHeaderTitle:nil webServiceDefinition:taskDef batchSize:0];
 tasksSection.dataFetchOptions.sort = TRUE;
 tasksSection.addButtonItem = self.addButton;
 [self.tableViewModel addSection: tasksSection];
}

http://www.parse.com
http://www.parse.com

Exploring User Defaults Binding

STV 3.0 has made the very common task of saving the user de-
faults to NSUserDefaults an extremely trivial task. Using an
SCUserDefaultsDefinition and a single line of code, you can
have your user defaults UI up and running in literally one or
two minutes!

As always, we’ll start by creating a new project based on the
template created in Section 3: Setting up STV. Now select
RootViewController.m and insert the following code:

Now compile and run the app:

Exiting and reopening the app, you’ll discover that all values
are being automatically saved in NSUserDefaults. It really
can’t get any easier than this!

35

- (void)viewDidLoad
{
 [super viewDidLoad];

 SCUserDefaultsDefinition *userDefaultsDef = [SCUserDefaultsDefini-
tion definitionWithUserDefaultsNamesString:@"Login
Details:(username,password):Will be automatically signed in;
Settings:(message, volume, ringtone)"];
 SCPropertyDefinition *passwordDef = [userDefaultsDef
propertyDefinitionWithName:@"password"];
 passwordDef.attributes = [SCTextFieldAttributes
attributesWithPlaceholder:nil secureTextEntry:YES
autocorrectionType:UITextAutocorrectionTypeNo
autocapitalizationType:UITextAutocapitalizationTypeNone];
 SCPropertyDefinition *volumeDef = [userDefaultsDef
propertyDefinitionWithName:@"volume"];
 volumeDef.type = SCPropertyTypeSlider;
 volumeDef.attributes = [SCSliderAttributes
attributesWithMinimumValue:0 maximumValue:100];
 SCPropertyDefinition *ringtoneDef = [userDefaultsDef
propertyDefinitionWithName:@"ringtone"];
 ringtoneDef.type = SCPropertyTypeSelection;
 ringtoneDef.attributes = [SCSelectionAttributes
attributesWithItems:[NSArray arrayWithObjects:@"Ring 1", @"Ring 2",
@"Ring 3", nil] allowMultipleSelection:NO allowNoSelection:YES];

 [self.tableViewModel
 generateSectionsForUserDefaultsDefinition:userDefaultsDef];
}

CHAPTER 2

Understanding
STV’s Core
Concepts

In this chapter you’ll be introduced to all
the basic core concepts behind STV.
While an understanding of these con-
cepts is not absolutely essential for you
to be able to use the framework, you’ll
only be able to utilize STV to its fullest by
having a solid understanding of all the ba-
sics discussed here.

SECTION 1

Data Definitions

If you’ve followed the earlier ‘Getting Started’ chapter and util-
ized SCClassDefinition or SCEntityDefinition in your projects,
odds are you already have an idea of what data definitions are
and how essential are they to the STV framework.

Simply put, a data definition is how STV gets to “understand”
what your own data model looks like. Once STV understands
your data model, it will be able to generate all the required
user interface elements that represent this model. Further-
more, it will understand the relationships between your differ-
ent data models, and hence will accordingly reflect these rela-
tionships in the generated UI.

The following is a list of all data model types that STV sup-
ports out-of-the-box.

DATA MODEL DATA DEFINITION CLASS

Normal Objective-C classes SCClassDefinition

Core Data SCEntityDefinition

Web services SCWebServiceDefinition

Parse.com classes SCParseComDefinition

iCloud key-value store SCiCloudKeyValueDefinition

NSUserDefaults store SCUserDefaultsDefinition

NSDictionary SCDictionaryDefinition

While most Objective-C classes are fully definable using
SCClassDefinition, the following special classes are an excep-
tion, and must be defined using their own data definition
classes.

OBJECTIVE-C CLASS DATA DEFINITION CLASS

NSString SCStringDefinition

NSNumber SCNumberDefinition

NSDate SCDateDefinition

37

The previous exceptions actually allow for easily generating tables from
basic data types. For example, here is the code used to display the con-
tents of an array of NSDate values:

NSMutableArray *datesArray = [NSMutableArray
arrayWithObjects:date1, date2, date3, nil];

SCArrayOfObjectsSection *datesSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil items:datesArray
 itemsDefinition:[SCDateDefinition definition]];
[self.tableViewModel addSection:datesSection];

In addition to all the predefined data model definition classes
listed above, STV also allows you to create your own custom
ones, just in case you’re using a special unsupported data
model (a binary flat file database for example). For more on
that, please refer to the chapter titled ‘Extending STV’.

SCDataDefinition
All STV data definition classes must descend from the abstract
base class called SCDataDefinition. SCDataDefinition repre-
sents a generic class that is able to define the structure of any
given data model. At its core, it consists of a list of property
definitions of type SCPropertyDefinition. Each property defi-
nition represents an element of the underlying data model.
For example, in an SCClassDefinition, each property defini-
tion resembles a class property. In an SCEntityDefinition,
each property definition resembles an entity attribute. In an
SCDictionaryDefinition, each property definition resembles a
dictionary key, and so on.

Most of the property definitions are typically created automati-
cally at the data definition’s initialization for you from the in-
formation provided to the constructor method. You are still
however able to manually add any custom property defini-
tions you may have. There will be examples throughout the
whole book that illustrate this.

38

SCPropertyDefinition
As stated above, property definitions are the building blocks
of SCDataDefinition. The purpose of a property definition is
to fully describe how the UI is generated for the data model
element it resembles. For example, in the ‘Exploring Object
Binding’ section of the previous chapter, the property defini-
tion was used to have STV generate a text view for the Task’s
‘description’ property.

The type of the generated UI element is specified in SCProper-
tyDefinition’s ‘type’ property. The following is a list of all the
supported type values:

TYPE VALUE GENERATED UI

SCPropertyTypeAutoDetect
STV automatically detects what

UI to generate. This is the default
type value.

SCPropertyTypeLabel A cell with UILabel (SCLabelCell)

SCPropertyTypeTextView
A cell with UITextView

(SCTextViewCell)

SCPropertyTypeTextField
A cell with UITextField

(SCTextFieldCell)

SCPropertyTypeNumericTextField
A cell with UITextField that only

accepts numeric values
(SCNumericTextFieldCell)

SCPropertyTypeSlider
A cell with UISlider

(SCSliderCell)

SCPropertyTypeSegmented
A cell with UISegmentedControl

(SCSegmentedCell)

TYPE VALUE GENERATED UI

SCPropertyTypeSwitch
A cell with UISwitch

(SCSwitchCell)

SCPropertyTypeDate
A cell that provides a date picker

(SCDateCell)

SCPropertyTypeImagePicker
A cell that provides an image
picker (SCImagePickerCell)

SCPropertyTypeSelection

A cell that automatically
generates a detail view of

selection strings
(SCSelectionCell)

SCPropertyTypeObjectSelection

A cell that automatically
generates a detail view of

selection objects
(SCObjectSelectionCell)

SCPropertyTypeObject

A cell that automatically
generates a detail view displaying

all the associated object’s
properties (SCObjectCell)

SCPropertyTypeArrayOfObjects

A cell that automatically
generates a detail view displaying

an array of objects
(SCArrayOfObjectsCell)

SCPropertyTypeCustom

Generates a custom user-defined
cell. Set the property definition’s

‘uiElementClassName’ or
‘uiElementNibName’ properties

to the custom cell.

SCPropertyTypeNone Does not generate any UI

SCPropertyTypeUndefined
Reserved for internal framework

use

39

For each property definition type, only certain property data
types are allowed. For example, a property definition of type
SCPropertyTypeTextField only supports properties of data
type NSString. Following is a list of all supported data types
for each property type:

TYPE VALUE SUPPORTED DATA TYPE

SCPropertyTypeAutoDetect Any

SCPropertyTypeLabel Any

SCPropertyTypeTextView NSString

SCPropertyTypeTextField NSString

SCPropertyTypeNumericTextField NSNumber, int, float, double

SCPropertyTypeSlider NSNumber, int, float, double

SCPropertyTypeSegmented NSNumber, int

SCPropertyTypeSwitch NSNumber, BOOL

SCPropertyTypeDate NSDate

SCPropertyTypeImagePicker NSString containing the image path

SCPropertyTypeSelection
NSString, NSNumber,

NSMutableSet

SCPropertyTypeObjectSelection NSObject

SCPropertyTypeObject NSObject

SCPropertyTypeArrayOfObjects NSMutableArray

SCPropertyTypeCustom N/A

SCPropertyTypeNone N/A

SCPropertyTypeUndefined N/A

To set the type of an automatically generated property defini-
tion, it’s very common to retrieve it using the owner data defi-
nition’s ‘propertyDefinitionWithName:’ method.

SCPropertyDefinition *descPropertyDef =
 [taskDef propertyDefinitionWithName:@"description"];
descPropertyDef.type = SCPropertyTypeTextView;

Finally, most property types can have the attributes of their
generated UI elements further configured by setting the prop-
erty definition’s ‘attributes’ property to a compatible class
(they usually have the same name, e.g.: SCPropertyTypeText-
Field and SCTextFieldAttributes). For example, to set a place-
holder for the generated UITextField control, the following
code can be used:

SCPropertyDefinition *namePropertyDef =
 [taskDef propertyDefinitionWithName:@"name"];
namePropertyDef.type = SCPropertyTypeTextField;
namePropertyDef.attributes = [SCTextFieldAttributes
 attributesWithPlaceholder:@"Enter task name"];

40

It’s worth noting here that the above could have also been achieved by
using the ‘Actions’ feature. Here is an example:

namePropertyDef.type = SCPropertyTypeTextField;
namePropertyDef.cellActions.willConfigure = ^(SCTableViewCell
*cell, NSIndexPath *indexPath)
 {
 SCTextFieldCell *textFieldCell = (SCTextFieldCell *)cell;
 textFieldCell.textField.placeholder = @"Enter task name";
 };

For more on actions, please refer to this chapter’s ‘Actions’ section.

Automatic property definitions
As stated earlier, most of your property definitions will be
automatically generated at initialization time to save you the
hassle of having to add them manually yourself. To be able to
do this, data definition initializer methods typically have a pa-
rameter called ‘propertyNamesString’ (also sometimes called
‘keyNamesString’ in some SCDataDefinition subclasses),
which is a string containing all property names separated by
semi colons. For example, this is how TaskDef from our ‘Get-
ting Started’ chapter is initialized:

SCClassDefinition *taskDef = [SCClassDefinition
 definitionWithClass:[Task class]
 propertyNamesString:@"name;description;category;dueDate;completed"];

The above will place all the generated cells in the same group
(section). To have the definition generate more than one
group, include the property names between parenthesis, pre-
ceded by the section’s header title and a colon. The property
names inside the parenthesis must be separated by commas.
Here is an example:

@"Task Details:(name,description,category,dueDate);Task
Status:(completed)"];

To create a section without a header title, simply remove all
text before the colon:

@":(name,description,category,dueDate);Task Status:(completed)"];

Similarly, to add a section footer, add a colon after the paren-
thesis and type the footer’s name.

@":(name,description,category,dueDate):Task Details;Task
Status:(completed)"];

Finally, to automatically generate a custom property defini-
tion, place a tilde ‘~’ character before the custom property’s
name.

@"Task Details:(name,description,category,dueDate);Task
Status:(completed);Task Actions:(~Delete Task)"];

Custom property definitions are property definitions for properties
that do not actually exist in the data model. Custom property defini-
tions will be discussed in great detail later on in this section.

If for any reason you need to add a property definition manu-
ally, just create a new SCPropertyDefinition instance and use
SCDataDefinition’s ‘addPropertyDefinition:’ method prop-
erty to add it. Also, to add or manage property groups, use
SCDataDefinition’s ‘propertyGroups’ property.

41

Custom generated UI elements
STV gives you the flexibility to have the property definition
generate your own custom cell, instead of the framework’s
standard predefined cells. For example: if the property defini-
tion’s type is SCPropertyTypeTextView, instead of generating
the standard SCTextViewCell, you can have the framework
generate any other cell that you have defined.

To specify what type of cell the framework should create, sim-
ply set the property definition’s ‘uiElementClass’ property to
the class of your custom cell.

descPropertyDef.uiElementClass = [MyCustomTextViewCell class];

Alternatively, if you’ve created your custom cell as a Nib file,
just set the property definition’s ‘uiElementNibName’ property
to the name of this file.

descPropertyDef.uiElementNibName = @"MyCustomTextViewCell”;

In the above example, if your cell is an SCTextViewCell sub-
class, then you’re all done. If it’s based on SCCustomCell how-
ever, you have to tell STV which of your cell’s controls to bind
the description property to.

Important: all custom cells must subclass SCCustomCell or any of
its subclasses.

Setting up how STV binds to your custom cell’s controls is
really simple. First, you give each control in the custom cell a
tag value that is greater than zero. Next, you set the prop-

erty definition’s ‘objectBindingsString’ property to a string
containing the control tag and the property name it binds to,
separated by a colon.

For example, if your custom cell has a UITextView control
with a tag value of 1 that needs to bind to the ‘description’
property:

descPropertyDef.objectBindingsString = @"1:description”;

If your custom cell has more than one control that bind to
more than one property (like the TweetCell from the Explor-
ing Web Service Binding section), you can still specify more
than one binding by separating them by semi colons:

namePropertyDef.objectBindingsString = @"1:firstName;2:lastName”;

42

Custom property definitions
With STV’s custom property definitions feature, you can add
property definitions that, unlike normal property definitions,
do not have to directly correspond to an existing element of
the data model. For instance, if you’re working with an SCEnti-
tyDefinition, a custom property definition does not have to
correspond to an already existing entity attribute.

This feature provides you with maximum flexibility, and has
many useful applications. Some typical applications of custom
property definitions are:

• Complex custom cells. Sometimes you need the gener-
ated cell to have the data for more than one property. For ex-
ample, you might have two properties called firstName and
lastName, and you’d like to display both in a single custom
cell. In this case, you can create a custom cell with two UILa-
bels, with tags 1 and 2 respectively. Next, you would add the
custom cell to your data definition via a custom property
definition as follows:

SCCustomPropertyDefinition *namePropertyDef =
 [SCCustomPropertyDefinition definitionWithName:@"full name"
 uiElementNibName:@"NameCell"
 objectBindingsString:@"1:firstName;2:lastName"];
[taskDef addPropertyDefinition:namePropertyDef];

• Button Cells. It’s a relatively common task to want to add
additional cells to the automatically generated ones. One
typical use of this is to add cells that act like buttons, where
a specific action would occur when they’re tapped. Using cus-

tom property definitions makes adding such special cells pos-
sible.

SCCustomPropertyDefinition *buttonPropertyDef =
 [SCCustomPropertyDefinition definitionWithName:@"button"
 uiElementClass:[SCTableViewCell class]
 objectBindingsString:nil];
buttonPropertyDef.cellActions.willConfigure = ^(SCTableViewCell
*cell, NSIndexPath *indexPath)
{
 cell.textLabel.textAlignment = NSTextAlignmentCenter;
};
buttonPropertyDef.cellActions.didSelect = ^(SCTableViewCell *cell,
NSIndexPath *indexPath)
{
 // place button action here
};
[taskDef addPropertyDefinition:buttonPropertyDef];

If you want to place the button on its own separate section, it’s usually
much easier to have the framework automatically create the section
and the custom property definition in the data definition’s property-
NamesString. To specify a custom property (as opposed to a normal
property) in the propertyNamesString, just place a tilde ‘~’ character
before the property’s name.

SCClassDefinition *taskDef = [SCClassDefinition
 definitionWithClass:[TestObj class]
 propertyNamesString:@"Task Details:(name, description);Task
Actions:(~button)"];
SCPropertyDefinition *buttonPropertyDef = [taskDef
 propertyDefinitionWithName:@"~button"];
buttonPropertyDef.cellActions.willConfigure = ^(SCTableViewCell
*cell, NSIndexPath *indexPath)
{
 cell.textLabel.textAlignment = NSTextAlignmentCenter;
};
buttonPropertyDef.cellActions.didSelect = ^(SCTableViewCell *cell,
NSIndexPath *indexPath)
{
 // place button action here
};

43

SECTION 2

Data Stores

Data stores provide the STV framework with a generic inter-
face that enables it to access any kind of data storage. Using
data stores, the same STV element can fetch, create, update
and delete data from any number of different sources. For in-
stance, the same SCArrayOfObjectsSection object can access
data from an in-memory array, Core Data, or even a remote
web service.

STV provides the following data stores out-of-the-box:

DATA STORE DATA STORE CLASS

Heap memory storage SCMemoryStore

Core Data SCCoreDataStore

Web services SCWebServiceStore

iCloud key-value storage SCiCloudKeyValueStore

NSUserDefaults storage SCUserDefaultsStore

In addition to all the built in data stores, you can also create
your own custom stores (typically with your own custom data
definitions too). This is however rarely needed, as the afore-
mentioned STV classes already cover the vast majority of all
your data access needs. For more on custom data stores,
please refer to the chapter titled ‘Extending STV’.

44

SCDataStore
All STV data store classes must descend from the abstract
base class called SCDataStore. SCDataStore represents a ge-
neric class that is able to represent any kind of data storage. It
also exposes common CRUD (create, retrieve, update, delete)
methods that allows full manipulation of the data in the store.

Every data store requires at least one default data definition
that defines the structure of the data stored in the store. Each
data store also supports two modes for data access: synchro-
nous and asynchronous. The data store mode is usually set by
the SCDataStore subclass. For example, SCMemoryStore is
synchronous, while SCWebServiceStore is asynchronous.

Fortunately, you almost don’t need to worry about data stores
at all. For your convenience, STV usually creates the data
stores automatically for you depending on your data defini-
tion. As a matter of fact, every data definition is able to gener-
ate a compatible data store using its ‘generateCompatibleDa-
taStore’ method. You are still however able to instantiate
STV elements directly from data stores if you wish. For exam-
ple:

SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil dataStore:myDataStore];

SCMemoryStore
SCMemoryStore is a synchronous store that represents the
heap memory storage. This store is typically used to hold your
own custom Objective C classes. The following are all the data
definitions that are compatible with SCMemoryStore:

• SCClassDefinition

• SCDictionaryDefinition

• SCStringDefinition

• SCNumberDefinition

• SCDateDefinition

An SCMemoryStore can be created in the following manner:

NSMutableArray *objectsArray = [NSMutableArray
 arrayWithObjects:object1,object2,object3, nil];
SCClassDefinition *objectDef = [SCClassDefinition
 definitionWithClass:[MyCustomObject class]
 autoGeneratePropertyDefinitions:YES];

SCMemoryStore *objectsStore = [SCMemoryStore
 storeWithObjectsArray:objectsArray defaultDefiniton:objectDef];

45

SCCoreDataStore
SCCoreDataStore is a synchronous store that represents Core
Data storage. Using an SCEntityDefinition as its default
data definition (the store’s only compatible data definition),
an SCCoreDataStore is typically created as follows:

SCEntityDefinition *entityDef = [SCEntityDefinition
 definitionWithEntityName:@"MyEntity" managedObjectContext:context
 autoGeneratePropertyDefinitions:YES];

SCCoreDataStore *entityStore = [SCCoreDataStore
 storeWithDefaultDataDefinition:entityDef];

SCWebServiceStore
SCWebServiceStore is an asynchronous store that represents
any remote REST web service. The store has two compatible
data definitions: SCWebServiceDefinition and SCParseComDe-
finition. An SCWebServiceStore can be created in the follow-
ing manner:

SCWebServiceDefinition *tweetDef = [SCWebServiceDefinition
 definitionWithBaseURL:@"http://search.twitter.com/"
 fetchObjectsAPI:@"search.json" resultsKeyName:@"results"
 resultsDictionaryKeyNamesString:@"text;from_user_name"];

SCWebServiceStore *tweetsStore = [SCWebServiceStore
 storeWithDefaultWebServiceDefinition:tweetDef];

46

SCiCloudKeyValueStore
SCiCloudKeyValueStore represents the NSUbiquitousKeyVal-
ueStore iCloud storage. This store is typically used to store
user preferences to iCloud and have it available on every iDe-
vice they have.

Using an SCiCloudKeyValueDefinition as its default data defi-
nition, an SCiCloudKeyValueStore can be created in the follow-
ing manner:

SCiCloudKeyValueDefinition *iCloudDef = [SCiCloudKeyValueDefinition
 definitionWithiCloudKeyNamesString:@"username;password"];

SCiCloudKeyValueStore *iCloudStore = [SCiCloudKeyValueStore
 storeWithDefaultDataDefinition:iCloudDef];

SCUserDefaultsStore
SCUserDefaultsStore represents the NSUserDefaults local
storage. This store is typically used to easily store user prefer-
ences to their device.

Using an SCUserDefaultsDefinition as its default data defini-
tion, an SCUserDefaultsStore can be created in the following
manner:

SCUserDefaultsDefinition *userDefaultsDef = [SCUserDefaultsDefinition
 definitionWithUserDefaultsKeyNamesString:@"username;password"];

SCUserDefaultsStore *userDefaultsStore = [SCUserDefaultsStore
 storeWithDefaultDataDefinition:userDefaultsDef];

47

Direct data store access
As was stated earlier in this section, you almost never have the
need to create data stores yourself. Furthermore, data stores
are usually transparent to you and can go completely unno-
ticed. Having said that, there are certain cases where it’s very
convenient to have direct access your application’s data
stores:

• Manual data manipulation. Even though STV usually
handles all the data manipulation tasks automatically, you
may often need to add or remove objects manually from the
data store. Let’s say you have an SCArrayOfObjectsSection
displaying several Core Data managed objects, and you
need to add an extra object manually. In that case, the object
can be easily added using your section’s ‘dataStore’ prop-
erty:

NSObject *myObject = [objectsSection.dataStore createNewObject];
[myObject setValue:@"My new object" forKey:@"title"];
[objectsSection.dataStore insertObject:myObject];

[objectsSection reloadBoundValues];
[objectsSection.ownerTableViewModel.tableView reloadData];

• Single object views. Sometimes your entire table view is
based on the presence of a single object, which is created
when the application is first launched and reused afterwards
(very common in Core Data based applications). In that
case, directly using data stores can greatly simplify your
task:

SCEntityDefinition *entityDef = [SCEntityDefinition
 definitionWithEntityName:@"MyEntity" managedObjectContext:context
 autoGeneratePropertyDefinitions:YES];
SCCoreDataStore *entityStore = [SCCoreDataStore
 storeWithDefaultDataDefinition:entityDef];
NSArray *fetchedObjects = [entityStore fetchObjectsWithOptions:nil];

NSObject *myObject = nil;
if(fetchedObjects.count)
 myObject = [fetchedObjects objectAtIndex:0];
if(!myObject)
{
 // Create the object for the first time
 myObject = [entityStore createNewObject];
 [entityStore insertObject:myObject];
}

[self.tableViewModel generateSectionsForObject:myObject
 withDefinition:entityDef];

It is needless to say that both of the above operations could’ve
been equally done using Core Data’s own native API. Using
STV’s data stores however provided a much more convenient
alternative, and a much better and unified user experience.
Furthermore, with some other data stores (such as web serv-
ices) , the above simple operations are much more compli-
cated and might take pages of code if done using native API.

48

SECTION 3

Table View Models

Table view models are the master mind behind all of STV’s
magic. A table view model brings everything to life by acting
as the datasource and delegate for a UITableView control, pro-
viding it with all its sections, cells, and a lot of other functions.

A model also monitors all events that occur on the UITa-
bleView and reports them back to the framework. Most events
are automatically handled by the framework on your behalf,
such as when a cell is moved or deleted. You are still however
able to intercept most events and include your own custom be-
havior by using STV’s ‘Actions’ feature (for more on actions,
please refer to the section titled ‘Actions’). For example, you
can implement the ‘willDisplay‘ cell action to get notified
when the cell is displayed, or the ‘didSelect’ to take action
when the cell is selected.

SCTableViewModel
In its simplest form, an SCTableViewModel is a collection of
SCTableViewSection(s), which is in turn a collection of SCTa-
bleViewCell(s) (much more on these two classes in the next
two sections). Each model models a single UITableView that
is given at creation time:

self.tableViewModel = [SCTableViewModel
 modelWithTableView:self.tableView];

If you’re subclassing your view controller from SCViewController or SCTa-
bleViewController (like we did in the ‘Getting Started’ chapter), it’s very
rare when you’ll actually need to create the model yourself. Both of these
view controllers automatically create the model for you and associate it
with the view controller’s self.tableView property. For more information
on the many benefits of subclassing from STV’s view controllers, please
refer to the upcoming ‘View Controllers’ section.

As discussed earlier, SCTableViewModel acts as the data-
Source and delegate for its modeled UITableView (also ex-
posed via the model’s ‘tableView’ property), implementing all
the UITableViewDataSource and UITableViewDelegate meth-
ods on your behalf.

Once the model is ready, adding the different kinds of sections
becomes very straight forward:

49

// Add an array of objects section
SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
sectionWithHeaderTitle:nil entityDefinition:taskDef];
objectsSection.addButtonItem = self.addButton;
[self.tableViewModel addSection:objectsSection];

// Add a basic section with a single cell that acts as a refresh but-
ton
SCTableViewSection *section = [SCTableViewSection section];
SCTableViewCell *refreshCell = [SCTableViewCell
 cellWithText:@"Refresh Tasks"
 textAlignment: NSTextAlignmentCenter];
refreshCell.cellActions.didSelect = ^(SCTableViewCell *cell, NSIndex-
Path *indexPath)
{
 [cell.ownerTableViewModel reloadBoundValues];
 [cell.ownerTableViewModel.tableView reloadData];
};
[section addCell:refreshCell];
[self.tableViewModel addSection:section];

SCArrayOfObjectsModel
Very similar to its SCArrayOfObjectsSection counterpart,
SCArrayOfObjectsModel serves as a model that can display a
list of any kind of objects. There are two major differences be-
tween the two classes however:

• While SCArrayOfObjectsSection is only a single section,
SCArrayOfObjectsModel can display many automatically
generated sections that are generated based on the data it
holds. This is very useful for applications similar to Apple’s
‘Contacts App’, where each group of contacts are grouped un-
der a separate section based on the first letter of their name.

• SCArrayOfObjectsModel provides automatic searching func-
tionality, where you could easily attach a UISearchBar to the
model to enable the user of your application to search the
contents of the model.

It’s worth noting here that both SCArrayOfObjectsModel and SCArrayO-
fObjectsSection directly descend from the abstract base classes SCArray-
OfItemsModel and SCArrayOfItemsSection, respectively. SCArrayOfI-
temsModel and SCArrayOfItemsSection provide all the internal plumbing
for these classes, and should never be directly instantiated.

Let’s create a small sample application that illustrates both
these features. The sample app will be a mini version of the
iPhone’s Contacts App, and will be based on Core Data.

50

Start by creating a new project based on the project we cre-
ated in the section titled ‘Exploring Core Data Binding’, but
keep in mind the following differences:

• Since we’ll be adding a UISearchBar control to our root view
controller, we need to subclass ‘RootViewController’ from
SCViewController, instead of SCTableViewController as we
did earlier. The reason being that SCTableViewController
(like its UITableViewController superclass) only supports a
single view of type UITableView. Also, since we’ll be adding
the UISearchBar in Interface Builder, make sure to select
the ‘With XIB for user interface’ option.

• Since ‘RootViewController’ is now loaded from a XIB file,
make sure you update the code in AppDelegate.m file to re-
flect that:

RootViewController *rootViewController = [[RootViewController alloc]
 initWithNibName:@"RootViewController" bundle:nil];

Once how have the project ready, please follow these steps:

1. Add an entity called ‘ContactEntity’ to your project with
the following attributes:

2. Navigate to ‘RootViewController.h’ and add a new IBOut-
let property for our UISearchBar.

@interface RootViewController : SCViewController

@property (nonatomic, strong) IBOutlet UISearchBar *searchBar;

@end

Make sure you also synthesize the property in RootViewCon-
troller’s implementation file (.m).

3. Navigate to ‘RootViewController.xib’ and make sure the
empty view is selected. From the ‘Attributes inspector’,

51

set the simulated ‘Top Bar’ attribute to ‘Navigation Bar’,
which will better help you visualize the generated view as
you lay out the controls. From the ‘Object Library’ add a
UISearchBar and a UITableView control, then lay them
out similar to the following:

4. Now we need to connect the UISearchBar and UITa-
bleView controls to their respective outlets in RootView-
Controller (SCViewController automatically provides a UI-
TableView outlet called ‘tableView’). To do that, Control-
click the ‘File’s Owner’ object and drag to the UISearch-
Bar, then select ‘searchBar’. Similarly, Control-click the

‘File’s Owner’ object and drag to the UITableView, then
select ‘tableView’. To make sure everything is properly
connected, just bring up the ‘Connections inspector’ and
you should see something identical to the following:

5. Finally, update RootViewController.m with the following
code:

52

@implementation RootViewController

@synthesize searchBar;

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Add an 'Add' and 'Edit' buttons to the navigation bar
 self.navigationBarType = SCNavigationBarTypeAddLeftEditRight;

 NSManagedObjectContext *context = [(id)[UIApplication
sharedApplication].delegate managedObjectContext];

 SCEntityDefinition *contactDef = [SCEntityDefinition
definitionWithEntityName:@"ContactEntity"
managedObjectContext:context
propertyNamesString:@"firstName;lastName;email"];
 // Set the generated cell's title
 contactDef.titlePropertyName = @"firstName;lastName";

 // We need to set self.tableViewModel to an
 // SCArrayOfObjectsModel instance, since SCViewController
 // creates it as SCTableViewModel by default
 SCArrayOfObjectsModel *contactsModel = [SCArrayOfObjectsModel
modelWithTableView:self.tableView entityDefinition:contactDef];
 contactsModel.addButtonItem = self.addButton;
 contactsModel.searchBar = self.searchBar;
 //search by both first and last names
 contactsModel.searchPropertyName = @"firstName;lastName";
 contactsModel.autoSortSections = YES;
 contactsModel.modelActions.sectionHeaderTitleForItem =
^NSString*(SCArrayOfItemsModel *itemsModel, NSObject *item,
NSUInteger itemIndex)
 {
 NSString *objectName = (NSString *)[item
valueForKey:@"firstName"];

 // Return first character of objectName
 return [[objectName substringToIndex:1] uppercaseString];
 };
 contactsModel.dataFetchOptions.sort = TRUE; // Sort names
 self.tableViewModel = contactsModel;
}

Running the app and entering a few names should create
something like this:

53

Notice all the sections that have been automatically generated.
Furthermore, notice how entering characters into the search
box automatically filters the table view:

54

SECTION 4

Sections

STV’s sections correspond to regular UITableView sections,
and are essentially a collection of SCTableViewCell(s). STV
has many types of sections, starting from regular sections
where you add the cells manually, and all the way up to sec-
tions that automatically generate their cells depending on how
your data is structured.

Note: Using STV, you never need to worry about handling cell reuse, no
matter what type of section you’re using or how you’re adding the cells to
it. The STV framework automatically handles all cell reuse chores, in addi-
tion to other optimization functions that make your table view as respon-
sive and as memory efficient as possible.

The following is a list of the different types of sections avail-
able:

55

SECTION CLASS

SCTableViewSection

A basic section where cells are
added manually using its
‘addCell’ method. This section
is also serves as the superclass
of all other sections.

SCObjectSection

A section that automatically
generates its cells from the
properties/attributes of a given
object.

SCArrayOfItemsSection

An abstract base class that
servers as the superclass of
several classes such as
SCArrayOfObjectsSection and
SCSelectionSection

SCArrayOfObjectsSection

A section that automatically
generates its cells from an list of
any type of objects.

SCArrayOfStringsSection

A section that automatically
generates its cells from a list of
NSStrings.

SCSelectionSection

A section that provides selection
functionality from a list of
strings.

SCObjectSelectionSection

A section that provides selection
functionality from a list of
objects.

SCTableViewSection
This type of basic section is used internally as a superclass to
all the other types of sections. You can also use it when you
want to add sections manually to your table view (versus add-
ing them automatically using data definitions).

Adding a new SCTableViewSection all with a header and
footer to your model is really simple:

You can also specify header/footer views instead of regular
text if you need custom headers/footers.

SCTableViewSection *section = [SCTableViewSection section];
UILabel *headerLabel = [[UILabel alloc] init];
headerLabel.text = @"Header";
headerLabel.textAlignment = NSTextAlignmentCenter;
headerLabel.font = [UIFont fontWithName:@"Zapfino" size:14];
headerLabel.backgroundColor = [UIColor clearColor];
[headerLabel sizeToFit];
section.headerView = headerLabel;
[self.tableViewModel addSection:section];
[section addCell:[SCTableViewCell cell]];

SCObjectSection
Given any object and its data definition, SCObjectSection auto-
matically creates all its cells based on the object’s properties
and their types.

You rarely ever need to create this section manually, as its usu-
ally created automatically by the framework. If you have an ob-
ject that you want to create the cells for, it’s always recom-
mended to use your model’s generateSectionsForObject
method instead of creating an SCObjectSection directly. The
reason for this is that the object’s definition my have more
than one section defined in its propertyNamesString (as
we’ve seen in many earlier examples).

[self.tableViewModel generateSectionsForObject:myObject
 withDefinition:myObjectDef];

Once the object section is created, you can always get the re-
spective cell generated for each property using the section’s
‘cellForPropertyName:’ method.

SCTableViewCell *firstNameCell = [myObjectSection
 cellForPropertyName:@"firstName"];

56

SCTableViewSection *section = [SCTableViewSection
 sectionWithHeaderTitle:@"Header" footerTitle:@"Footer"];
[self.tableViewModel addSection:section];

Notice that STV automatically calculates the header’s height based on the
height of the header view. If you still need to fine tune it or even set the
header height yourself, just set the section’s ‘headerHeight’ property to
the desired height. The same functionality is available for footers as well.

SCArrayOfObjectsSection
This is one of STV’s most popular sections, and it’s usually the
starting point for many STV based applications. As you’ve
probably noticed in most of the samples created earlier, an
SCArrayOfObjectsSection takes a list of objects from a data
store and displays them each in its own cell. When each cell is
tapped, the section automatically creates a detail view with
one or more SCObjectSection(s) that give the user access to
the object’s properties. SCArrayOfObjectsSection also conven-
iently handles adding new objects, rearranging objects order
(if supported by the data store), and deleting objects. The func-
tionality provided by this section can literally save you days of
work for each single time you use it!

An SCArrayOfObjectsSection can be created using different
initializer methods. You should always use the correct initial-
izer for your data store type:

• Regular NSMutableArray of objects (SCMemoryStore):

SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil items:objectsArray
 itemsDefinition:objectDef];

Note: objectsArray must be of type NSMutableArray since the section
needs to support operations such as adding, removing, and rearranging
objects.

Note: if the elements of objectsArray are of basic data types such as
NSString, NSNumber, or NSDate, you should use the SCStringDefinition,
SCNumberDefinition, or SCDateDefinition respectively for the section’s
definition parameter.

• Core Data objects (SCCoreDataStore):

SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil entityDefinition:entityDef];

The above initializer fetches all the objects of the given entity-
Def. To fetch only a subset of the objects, just provide an
NSPredicate using the following initializer:

SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil entityDefinition:entityDef
 filterPredicate:predicate];

Note: The above initializers are only available when the STV+CoreData
framework extension is added to your project.

• Web Service dictionary objects (SCWebServiceStore):

SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil webServiceDefinition:webServiceDef];

To retrieve the data in small batches, pass in the batch size us-
ing the following initializer:

SCArrayOfObjectsSection *objectsSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:nil webServiceDefinition:webServiceDef
 batchSize:50];

Note: The above initializers are only available when the STV+WebServ-
ices framework extension is added to your project.

57

Once an SCArrayOfObjectsSection is initialized, it fetches all
its data from the provided data store, then generates a cell per
each fetched object. Each generated cell is a basic SCTa-
bleViewCell, and is automatically setup as follows:

• The cell’s textLabel.text property is set to the value of the
property name(s) provided in the object definition’s title-
PropertyName property (a property of SCDataDefinition).

• The cell’s detailTextLabel.text property is set to the value
of the property name(s) provided in the object definition’s
descriptionPropertyName property (a property of SCData-
Definition).

• The cell’s boundObject property is set to the object it corre-
sponds to.

As with any other cell, you can override this setup in the SCCel-
lActions action called ‘willConfigure’.

objectsSection.cellActions.willConfigure = ^(SCTableViewCell *cell,
NSIndexPath *indexPath)
{
 // Add the cell's index before its title
 NSString *title = [NSString stringWithFormat:@"%i- %@",
 indexPath.row, cell.textLabel.text];
 cell.textLabel.text = title;
};

To enable the section to add new objects, you need to do any
of the following:

• Create an ‘Add’ UIBarButtonItem and attach the section to
it. If you’re using an SCTableViewController or an SCView-
Controller, you can have it create the ‘Add’ button automati-
cally by setting its ‘navigationBarType’ property (for much
more details on this, please check out the upcoming View
Controllers section):

self.navigationBarType = SCNavigationBarTypeAddLeftEditRight;

objectsSection.addButtonItem = self.addButton;

• Have SCArrayOfObjectsSection generate an extra ‘Add’ cell
that adds a new object when it’s tapped. You can do that by
setting the section’s ‘addNewItemCell’ property to any cell
you want:

objectsSection.addNewItemCell = [SCTableViewCell
 cellWithText:@"Add new object"
 textAlignment: NSTextAlignmentCenter];

• Dispatch the add new item event yourself in response to any
of your custom actions:

-(void)myCustomButtonAction {
 SCArrayOfObjectsSection *objectsSection = (SCArrayOfObjectsSec-
tion *)[self.tableViewModel sectionAtIndex:0];
 [objectsSection dispatchEventAddNewItem];
}

58

In addition to the automatically generated SCTableView-
Cell(s), you can also specify your own custom cells that will ap-
pear instead of the standard ones . To do that, just return your
custom cell in the SCSectionActions action called ‘cellForRo-
wAtIndexPath’ (we already saw that in the Getting Started
chapter, under the Exploring Web Service Binding section).

objectsSection.sectionActions.cellForRowAtIndexPath =
 ^SCCustomCell*(SCArrayOfItemsSection *itemsSection, NSIndexPath
*indexPath)
{
 // '1' and '2' are the tags of the labels corresponding to
 // the firstName and lastName object properties
 NSString *bindingsString = @"1:firstName;2:lastName";

 SCCustomCell *customCell = [SCCustomCell cellWithText:nil
 objectBindingsString:bindingsString nibName:@"MyCustomCell"];

 return customCell;
};

When a custom cell is returned, STV automatically calculates its height
depending on the size of the cell’s controls. For example, you might have
a multi-line UILabel with text that exceeds the height you set for it in In-
terface Builder, and STV will automatically resize the cell to fit its new
size (we’ve seen an identical case in the Getting Started chapter, under
Exploring Web Service Binding, where each cell automatically resized to
fit a tweet). If you don’t want STV to automatically resize the cells, just set
the section’s ‘enableCellAutoResizing’ property to FALSE.

It is also possible to return more than one custom cell, depend-
ing on the index of the cell requested. It is also possible to
have STV use its standard default cell for a specific index just
by returning nil. In the case where more than one custom cell
is returned, the ‘reuseIdentifierForRowAtIndexPath’ action

must also be implemented, returning a unique string for each
of the custom cells. Here is some sample code illustrating this:

objectsSection.sectionActions.cellForRowAtIndexPath = ^SCCustom-
Cell*(SCArrayOfItemsSection *itemsSection, NSIndexPath *indexPath)
{
 SCCustomCell *customCell;
 if(indexPath.row % 2)
 customCell = [[MyCustomEvenCell alloc] init];
 else
 customCell = [[MyCustomOddCell alloc] init];

 return customCell;
};

objectsSection.sectionActions.reuseIdentifierForRowAtIndexPath =
^NSString*(SCArrayOfItemsSection *itemsSection, NSIndexPath *index-
Path)
{
 NSString *reuseId;
 if(indexPath.row % 2)
 reuseId = @"EvenCell";
 else
 reuseId = @"OddCell";

 return reuseId;
};

59

SCArrayOfStringsSection
This section is a direct descendant of SCArrayOfObjectsSec-
tion that enables you to easily display the contents of an
NSMutableArray of NSStrings. This section is typically used to
easily create a menu popover with several choices to choose
from. The following is an example of a typical use of SCArray-
OfStringsSection:

NSMutableArray *menuArray = [NSMutableArray arrayWithObjects:@"Menu
Item 1", @"Menu Item 2", @"Menu Item 3", nil];
SCArrayOfStringsSection *menuSection = [SCArrayOfStringsSection
 sectionWithHeaderTitle:@"Select Item" items:menuArray];
menuSection.cellActions.didSelect = ^(SCTableViewCell *cell, NSIndex-
Path *indexPath)
{
 switch (indexPath.row)
 {
 case 0:
 // Item 1 selected
 break;
 case 1:
 // Item 2 selected
 break;
 case 2:
 // Item 3 selected
 break;;
 }
};
[self.tableViewModel addSection:menuSection];

It’s worth noting here that we could still have used a regular SCArrayO-
fObjectsSection to display the strings array. This is made possible by the
SCStringDefinition class, since SCArrayOfObjectsSection always re-
quires an object definition at initialization:

SCArrayOfObjectsSection *menuSection = [SCArrayOfObjectsSection
 sectionWithHeaderTitle:@"Select Item" items:menuArray
 itemsDefinition:[SCStringDefinition definition]];

SCSelectionSection
This section is a direct descendant of SCArrayOfStringsSec-
tion that provides selection functionality out of a given array
of strings. Once the user does their selection, the index of the
selected item is stored in the section’s ‘selectedItemIndex’
property. Furthermore, the index is also assigned to the sec-
tion’s boundObject’s boundPropertyName (if set).

It is very seldom when you actually need to create this section
yourself, as it’s usually created automatically by your data defi-
nitions.

NSMutableArray *items = [NSMutableArray
 arrayWithObjects:@"Choice 1", @"Choice 2", @"Choice 3", nil];
SCSelectionSection *selectionSection = [SCSelectionSection
 sectionWithHeaderTitle:nil items:items];
[self.tableViewModel addSection:selectionSection];

60

SCObjectSelectionSection
This section is a direct descendant of SCArrayOfObjectsSec-
tion that provides selection functionality out of a given array
of objects. Once the user does their selection, the index of the
selected object is stored in the section’s ‘selectedItemIndex’
property. Furthermore, the object itself is assigned to the sec-
tion’s boundObject’s boundPropertyName (if set).

It is very seldom when you actually need to create this section
yourself, as it’s usually created automatically by your data defi-
nitions.

61

SECTION 5

Cells

STV’s cells correspond to regular UITableView cells. As a mat-
ter of fact, STV’s SCTableViewCell directly descends from UI-
TableViewCell. To provide a significantly better and enjoyable
developer’s experience, the STV framework defines several
types of other specialized cells. The following is a list of the dif-
ferent types of cells available:

CELL CLASS

SCTableViewCell

A basic cell that serves as a
superclass for all the other cell

types. Any cell used with the STV
framework must descend from

this cell.

CELL CLASS

SCControlCell
Serves as the superclass for any

cell with a UIControl control.

SCLabelCell
A cell with a UILabel control that

is used to display static text.

SCTextViewCell
A cell with a UITextView control.
This cell automatically resizes to
fit the contents of its text view.

SCTextFieldCell A cell with a UITextField control.

SCNumericTextFieldCell
A cell with a UITextField control
that only accepts numeric data.

SCSliderCell A cell with a UISlider control.

SCSegmentedCell
A cell with a

UISegmentedControl.

SCSwitchCell A cell with a UISwitch control.

SCDateCell
A cell that provides a

UIDatePicker to choose a date
with.

SCImagePickerCell
A cell that provides a

UIImagePickerController to pick
an image with.

SCSelectionCell
A cell that automatically

generates a detail view with an
SCSelectionSection.

SCObjectSelectionCell
A cell that automatically

generates a detail view with an
SCObjectSelectionSection.

62

CELL CLASS

SCObjectCell
A cell that automatically

generates a detail view with an
SCObjectSection.

SCArrayOfObjectsCell
A cell that automatically

generates a detail view with an
SCArrayOfObjectsSection.

SCCustomCell

This cell enables you to define
your own custom cells. All

custom cells must be an instance
or a subclass of this cell.

We will now explore each kind of cell in more detail.

SCTableViewCell
This cell is the most basic of all STV cells. Directly descending
from UITableViewCell, SCTableViewCell gives you full access
to all the properties and methods of a regular cell. In addition
to that, SCTableViewCell provides many other convenience
properties not available in UITableViewCell, such as the
‘height’ and ‘movable’ properties.

In addition to that, SCTableViewCell provides many of the
plumbing required by all the other STV cell types. For in-
stance, it provides properties such as ‘boundObject’ and
‘boundValue’, which are essential for data manipulation.

What is boundObject, boundPropertyName, and boundValue?

As you probably know by now, STV cells are able to automatically retrieve
data from your objects’ properties, edit it, and set it back. To be able to do
that, each cell needs to get hold of the object it’s retrieving the data from,
and the specific property name that the cell is working with. If the cell is
automatically created, the STV framework sets its ‘boundObject’ property
to this object. Similarly, it sets the ‘boundPropertyName’ to the object’s
property name that the cell represents. Once these two properties are set,
the ‘boundValue’ property returns the value of the given property. If you
decide to create any of the cell types manually and would like the cell to
be fetching its data automatically, then you should always provide the
boundObject and boundPropertyName values in the cell’s initializer.

63

SCControlCell
SCControlCell serves as the superclass for all the popular STV
control cells, such as SCTextFieldCell and SCSwitchCell.

One of the most convenient functionality that SCControlCell
provides is a set of properties that control the layout of the
text and the UIControl of its subclasses. Here is an overview
of these properties:

• controlMargin : The margin between the cell’s textLabel
and the control. Since the cell’s control usually sticks to the
textLabel and moves along with it as it gets smaller or big-
ger, its usually visually appealing to leave a margin between
the textLabel and the control. This property defaults to 10
points.

• controlIndentation : This property controls the space be-
tween the control and the left edge of the cell. Although the
default behavior is for the control to stick to the textLabel,
you might want to omit this behavior if you have several
cells under each other and want all the controls aligned. Set-
ting this value makes the control respect a minimum dis-
tance between it and the cell’s edge, thus ignoring the textLa-
bel unless it grows past this distance. This property defaults
to 120 points.

• maxTextLabelWidth : This property controls the maximum
width of the cell’s text label and defaults to 200 points.

SCLabelCell
This is a cell with a right-aligned UILabel control that is used
to hold static text. The cell is usually automatically generated
for property definitions of type SCPropertyTypeLabel. If you
wish, you could also create the cell manually and directly as-
sign text to it’s label control:

SCLabelCell *labelCell = [SCLabelCell cellWithText:@"Label Cell"];
labelCell.label.text = @"Static text";
[section addCell:labelCell];

The bound property for this cell can be of any valid Objective
C type.

64

SCTextViewCell
This is a cell with an auto-resizing UITextView control that is
used to hold any variable amount of text. The cell is usually
automatically generated for property definitions of type
SCPropertyTypeTextView. If you wish, you could also create
the cell manually and directly assign text to it’s textView con-
trol:

SCTextViewCell *textViewCell = [SCTextViewCell
 cellWithText:@"Text View Cell"];
textViewCell.textView.text =
 @"The quick brown fox jumps over the lazy dog";
[section addCell:textViewCell];

If you wish, you can always set a minimum height and a maxi-
mum height for the cell, further controlling how the cell re-
sizes:

textViewCell.minimumHeight = 100;
textViewCell.maximumHeight = 200;

Furthermore, you can disable the auto-resizing functionality
altogether by setting the cell’s ‘autoResize’ property (inher-
ited from SCTableViewCell) to FALSE.

The bound property for this cell must be of type NSString.

SCTextFieldCell
This is a cell with a UITextField control that is used to hold a
small amount of text. The cell is usually automatically gener-
ated for property definitions of type SCPropertyTypeText-
Field. If you wish, you could also create the cell manually and
directly assign text to it’s textField control:

SCTextFieldCell *textFieldCell = [SCTextFieldCell
 cellWithText:@"Text Field Cell"];
textFieldCell.textField.placeholder = @"enter text";
[section addCell:textFieldCell];

The bound property for this cell must be of type NSString.

65

SCNumericTextFieldCell
This is a cell with a UITextField control that is used to hold nu-
meric data. The cell is usually automatically generated for
property definitions of type SCPropertyTypeNumericText-
Field. If you wish, you could also create the cell manually and
directly assign text to it’s textField control:

SCNumericTextFieldCell *numericFieldCell = [SCNumericTextFieldCell
 cellWithText:@"Numeric Cell"];
numericFieldCell.textField.text = @"3.141";
[section addCell:numericFieldCell];

The main advantage of using SCNumericTextFieldCell over a
normal SCTextFieldCell is that the earlier automatically vali-
dates user input to make sure that only numbers are entered.
Furthermore, you can further control the validation by specify-
ing a minimum, maximum, and whether the number can be a
float value:

numericFieldCell.minimumValue = [NSNumber numberWithInt:0];
numericFieldCell.maximumValue = [NSNumber numberWithInt:100];
numericFieldCell.allowFloatValue = NO;

The bound property for this cell must be of types: NSNumber,
int, float, or double.

SCSliderCell
This is a cell with a UISlider control that is used to represent a
certain numeric value. The cell is usually automatically gener-
ated for property definitions of type SCPropertyTypeSlider. If
you wish, you could also create the cell manually and directly
assign a value to the cell’s slider control:

SCSliderCell *sliderCell = [SCSliderCell
 cellWithText:@"Slider Cell"];
sliderCell.slider.value = 0.7;
[section addCell:sliderCell];

The bound property for this cell must be of types: NSNumber,
int, float, or double.

66

SCSegmentedCell
This is a cell with a UISegmentedControl control that is used
to store the index of the selected segment. The cell is usually
automatically generated for property definitions of type
SCPropertyTypeSegmented. If you wish, you could also create
the cell manually:

SCSegmentedCell *segmentedCell = [SCSegmentedCell
 cellWithText:@"Segmented Cell"];
[segmentedCell.segmentedControl insertSegmentWithTitle:@"S1"
 atIndex:0 animated:NO];
[segmentedCell.segmentedControl insertSegmentWithTitle:@"S2"
 atIndex:1 animated:NO];
[section addCell:segmentedCell];

The bound property for this cell must be of types: NSNumber
or int.

SCSwitchCell
This is a cell with a UISwitch control that is used to represent
a boolean value. The cell is usually automatically generated
for property definitions of type SCPropertyTypeSwitch. If you
wish, you could also create the cell manually and directly as-
sign an ‘on’ value to the cell’s switch control:

SCSwitchCell *switchCell = [SCSwitchCell
 cellWithText:@"Switch Cell"];
switchCell.switchControl.on = TRUE;
[section addCell:switchCell];

The bound property for this cell must be of types: NSNumber
or BOOL.

67

SCDateCell
This is a cell with a UIDatePicker control that is used to repre-
sent a date value. The cell is usually automatically generated
for property definitions of type SCPropertyTypeDate. If you
wish, you could also create the cell manually and directly as-
sign a date t0 the cell’s datePicker property:

SCDateCell *dateCell = [SCDateCell cellWithText:@"Date Cell"];
dateCell.datePicker.date = [NSDate date];
[section addCell:dateCell];

The bound property for this cell must be of type NSDate.

68

SECTION 6

View Controllers

The STV framework defines two custom view controller
classes that are analogous to the iOS SDK’s UITableViewCon-
troller and UIViewController classes: SCTableViewController
and SCViewController.

In previous versions of STV, these two classes were reserved
for STV’s internal use only. Due to popular demand by our us-
ers, starting STV 3.0 these classes have been completely re-
written and made publicly available for everyone to use. As a
matter of fact, we now strongly recommend that you base all
your view controllers on one of these two classes. Here is a list
of why we recommend this:

• SCView/TableViewController automatically creates a table
view model for you and sets it to its ‘tableViewModel’ prop-
erty, thus allowing you to immediately start using STV once
the view controller is created. SCViewController also adds
an IBOutlet property called ‘tableView’ that you can assign

a UITableView control to either in Interface Builder or in
code. Once you assign a value to tableView, SCViewControl-
ler automatically pairs the table view to the model.

• SCView/TableViewController automatically handles all
memory related issues during low memory warnings. Once a
low memory warning is issues, the view controller’s ta-
bleView is automatically released. Once the view controller
is loaded, it automatically pairs the newly created tableView
with the tableViewModel.

• You can automatically create all the common navigation bar
buttons just by setting SCView/TableViewController’s ‘navi-
gationBarType’ property. A list of all the possible navigation-
BarType values will be provided in the next section.

• SCView/TableViewController provides several actions that
let you easily determine when it has been presented or dis-
missed. This makes it really trivial to implement a certain be-
havior once the action occurs.

• Only view controllers of type SCViewController or SCTa-
bleViewController are allowed when providing your own cus-
tom detail views (via the ‘detailViewControllerForRo-
wAtIndexPath’ section action).

• Best of all, you can get all the above functionality just by re-
naming your UITableViewController and UIViewController
superclasses to SCTableViewController and SCViewControl-
ler, respectively. There isn’t any development overhead what-
soever!

69

Navigation bar types
Both SCTableViewController and SCViewController provide a
property called ‘navigationBarType’. Setting this property
automatically creates a set of commonly used navigation bar
controls. Here is a list of all the available values navigationBar-
Type:

BAR TYPE

SCNavigationBarTypeAuto

Have the framework
automatically determine

what navigation bar type is
needed. Only applicable

when the view controller is
passed as a custom detail

view controller.

SCNavigationBarTypeNone

Creates an empty navigation
bar with no buttons. If the
view controller is pushed

into a navigation controller
however, a back button is

added anyways.

SCNavigationBarTypeAddLeft
Creates a navigation bar with

an ‘Add’ button to the left.

SCNavigationBarTypeAddRight
Creates an ‘Add’ button to

the right.

SCNavigationBarTypeEditLeft
Creates an ‘Edit’ button to

the left.

SCNavigationBarTypeEditRight
Creates an ‘Edit’ button to

the right.

BAR TYPE

SCNavigationBarTypeAddRightEditLeft

Creates an ‘Add’
button to the right

and an ‘Edit’ button
to the left.

SCNavigationBarTypeAddLeftEditRight

Creates an ‘Add’
button to the left and
an ‘Edit’ button to the

right.

SCNavigationBarTypeDoneLeft
Creates a ‘Done’

button to the left.

SCNavigationBarTypeDoneRight
Creates a ‘Done’

button to the right.

SCNavigationBarTypeDoneLeftCancelRight

Creates a ‘Done’
button to the left and
a ‘Cancel’ button to

the right.

SCNavigationBarTypeDoneRightCancelLeft

Creates a ‘Done’
button to the right

and a ‘Cancel’ button
to the left.

SCNavigationBarTypeAddEditRight

Creates both an ‘Add’
button and an ‘Edit’
button to the right.

Once you’ve set the bar type, you can easily access the created
buttons using the view controller’s ‘addButton’, ‘editButton’,
‘cancelButton’, and ‘doneButton’ properties.

70

SCTableViewController
SCTableViewController directly descends from UITableView-
Controller, functioning as a view controller with a single UITa-
bleView control as its view. Since the table view control is al-
ready there, SCTableViewController is usually very convenient
to use without creating an XIB file, and sometimes even with-
out subclassing it!

You create an SCTableViewController exactly as you’d create a
regular UITableViewController:

SCTableViewController *viewController = [[SCTableViewController
 alloc] initWithStyle:UITableViewStyleGrouped];

If you’re not subclassing SCTableViewController (just like we
did above), you can start configuring the model right after ini-
tialization:

NSMutableArray *stringsArray = [NSMutableArray
 arrayWithObjects:@"String1", @"String2", @"String3", nil];
SCArrayOfStringsSection *stringsSection = [SCArrayOfStringsSection
 sectionWithHeaderTitle:nil items:stringsArray];

[viewController.tableViewModel addSection:stringsSection];

You can also start implementing actions such as the ‘willPre-
sent’ to set custom behavior for the different view controller
actions:

viewController.actions.willPresent = ^(SCTableViewController *vc)
{
 NSLog(@"viewController is about to be presented.");
};

If you’ve subclassed SCTableViewController however, the
‘viewDidLoad’ method is the recommended place to configure
your model:

@interface MyViewController : SCTableViewController

@end

@implementation MyViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSMutableArray *stringsArray = [NSMutableArray
 arrayWithObjects:@"String1", @"String2", @"String3", nil];
 SCArrayOfStringsSection *stringsSection =
 [SCArrayOfStringsSection sectionWithHeaderTitle:nil
 items:stringsArray];
 [self.tableViewModel addSection:stringsSection];
}

@end

Generally speaking, ‘viewDidLoad’ is the only method you need to imple-
ment when subclassing SCTableViewController.

71

SCViewController
As convenient as SCTableViewController may be, it is some-
times required to place more than one control on the view con-
troller’s view. Since SCTableViewController (as its UITa-
bleViewController parent) is configured to only have a single
UITableView control as its view, it will not be suitable for this
requirement.

SCViewController on the other hand, directly subclasses
UIViewController, and thus fully supports as many controls as
you wish on its main view (including more than one UITa-
bleView).

Unlike SCTableViewController where you often don’t need a
XIB file, with SCViewController it is usually very convenient
to have one. Since SCViewController already provides an
IBOutlet property called ‘tableView’, it’s really simple to con-
nect your XIB UITableView control to it. For a complete step
by step example on how to do this, please refer to the section
titled ‘Table View Models’, under SCArrayOfObjectsModel.

Similar to an SCTableViewController, an SCViewController
can either be directly instantiated or subclassed. However,
since an SCViewController usually has many controls with po-
tentially several IBOutlets, it is generally recommended to sub-
class it:

@interface MyViewController : SCViewController

@end

@implementation MyViewController

- (void)viewDidLoad
{
 [super viewDidLoad];

 NSMutableArray *stringsArray = [NSMutableArray
 arrayWithObjects:@"String1", @"String2", @"String3", nil];
 SCArrayOfStringsSection *stringsSection =
 [SCArrayOfStringsSection sectionWithHeaderTitle:nil
 items:stringsArray];
 [self.tableViewModel addSection:stringsSection];
}

@end

Generally speaking, ‘viewDidLoad’ is the only method you need to imple-
ment when subclassing SCViewController.

72

SECTION 7

Actions

Actions is one of the highlights of the STV 3.0 release. It is one
of those features that after you have used, you will wonder
how you ever survived without!

As you’ve probably noticed throughout the rest of this book,
actions enables you to execute custom code whenever a spe-
cific action occurs. While you can do the same job using dele-
gates, actions are much simpler to use since they can be set to
fire only for the specific element you’re interested in providing
the custom behavior for.

STV 3.0 heavily relies on actions, and has defined several ac-
tion classes that cover a wide range of the framework’s ele-
ments. The following is the list of available action classes:

ACTION CLASS

SCCellActions
Actions relating to

SCTableViewCell and its
subclasses

SCSectionActions
Actions relating to

SCTableViewSection and its
subclasses

SCModelActions
Actions relating to

SCTableViewModel and its
subclasses

SCTableViewControllerActions Actions relating to
SCTableViewController

SCViewControllerActions Actions relating to
SCViewController

We will now explore each action class in more detail.

73

SCCellActions
This is perhaps the most popular of all the action classes. Us-
ing SCCellActions, you are able to provide custom behavior in
response to many of the cell’s different events. For example, to
provide a custom behavior when a cell is tapped, you simply
set the ‘didSelect’ SCCellActions action:

myCell.cellActions.didSelect = ^(SCTableViewCell *cell, NSIndexPath
*indexPath)
{
 NSLog(@"Cell at indexPath:%@ has been selected.", indexPath);
};

For a list of all the actions available for SCCellActions, please refer to
SCCellAction’s documentation (also available online at:
http://www.sensiblecocoa.com/documentation/STV30/Classes/SCCellA
ctions.html)

You will find that cell actions can be set at three different lev-
els from within the STV framework: the model level, the sec-
tion level, and finally the cell level. When you set an action at
the model level, it fires for every single cell in the model. For
example, the following code sets the background color of all
cells in the model to yellow:

self.tableViewModel.cellActions.willDisplay = ^(SCTableViewCell
*cell, NSIndexPath *indexPath)
{
 cell.backgroundColor = [UIColor yellowColor];
};

Similarly, setting a cell action at the section’s level fires for
every single cell in this section. It also overrides any identical
action defined at the model’s level. For example, while all the
model cells background color is now yellow, the following
code excludes the cells of ‘mySection’ and sets their back-
ground color to blue:

mySection.cellActions.willDisplay = ^(SCTableViewCell *cell, NSIndex-
Path *indexPath)
{
 cell.backgroundColor = [UIColor blueColor];
};

Finally, setting an action at the cell’s level fires for only this
specific cell. As you may have guessed, it will also override any
identical action defined at either the section or the model lev-
els. The following code sets the background color of the very
first cell in ‘mySection’ to green:

SCTableViewCell *firstCell = [mySection cellAtIndex:0];
firstCell.cellActions.willDisplay = ^(SCTableViewCell *cell, NSIndex-
Path *indexPath)
{
 cell.backgroundColor = [UIColor greenColor];
};

74

One of the very convenient features of STV 3.0 is that actions
at the cell level can also be set by the data definition that auto-
matically generates the cells, way before the cell actually ex-
ists. For example, the following code sets the height of all the
cells generated for taskDef to 60 points:

taskDef.cellActions.willConfigure = ^(SCTableViewCell *cell, NSIndex-
Path *indexPath)
{
 cell.height = 60;
};

You can also set an action for a specific generated cell at the
property definition level. For instance, the following code sets
the height of the description cell to 120 points:

SCPropertyDefinition *descPropertyDef = [taskDef
 propertyDefinitionWithName:@"description"];
descPropertyDef.cellActions.willConfigure = ^(SCTableViewCell *cell,
NSIndexPath *indexPath)
{
 cell.height = 60;
};

Once the respective cells are generated, all the actions defined
in the data definitions will be copied to these cells. The only
exception would be to the cells who have an identical action
defined in their respective property definition, at which case
the property definition action will override the global data defi-
nition action.

SCSectionActions
SCSectionActions provides actions for section related events.
For example, the following action fires before the section’s
automatically generated detail view is presented:

objectsSection.sectionActions.detailModelWillPresent = ^(SCTa-
bleViewSection *section, SCTableViewModel *detailModel, NSIndexPath
*indexPath)
{
 // Set a custom title for the generated detail view
 detailModel.viewController.title = @"My custom title";
};

For a list of all the actions available for SCSectionActions, please refer to
SCSectionAction’s documentation (also available online at:
http://www.sensiblecocoa.com/documentation/STV30/Classes/SCSectio
nActions.html)

Section actions can be set at two levels: the model level and
the section level. Setting the action at the model level fires for
every single section in the model. Setting it at the section level
fires only for this specific section. Similarly to cell actions, set-
ting an action at the section level overrides any identical ac-
tion set at the model level.

75

SCModelActions
SCModelActions provides actions for model related events.
For example, the following action fires after SCArrayOfOb-
jectsModel has fetched all its objects from their data store:

objectsModel.modelActions.didFetchItemsFromStore = ^(SCArrayOfItems-
Model *itemsModel, NSMutableArray *items)
 {
 // Add a button cell at the end of the fetched items list
 SCTableViewCell *buttonCell = [SCTableViewCell
cellWithText:@"Tap me!" textAlignment:NSTextAlignmentCenter];
 buttonCell.cellActions.didSelect = ^(SCTableViewCell *cell,
NSIndexPath *indexPath)
 {
 NSLog(@"buttonCell tapped!");
 };

 [items addObject:buttonCell];
 };

For a list of all the actions available for SCModelActions, please refer to
SCModelAction’s documentation (also available online at:
http://www.sensiblecocoa.com/documentation/STV30/Classes/SCMode
lActions.html)

Model actions can only be set at a single level, the model level.

SCTableViewControllerActions
SCTableViewControllerActions provides actions for SCTa-
bleViewController related events. For example, the following
action fires right before the view controller is dismissed:

viewController.actions.willDismiss = ^(SCTableViewController *viewCon-
troller)
{
 NSLog(@"viewController is about to be dismissed.");
};

For a list of all the actions available for SCTableViewControllerActions,
please refer to SCTableViewControllerAction’s documentation (also avail-
able online at:
http://www.sensiblecocoa.com/documentation/STV30/Classes/SCTable
ViewControllerActions.html)

View controller actions can only be set at a single level, the
view controller level.

76

SCViewControllerActions
SCViewControllerActions provides actions for SCViewControl-
ler related events. It’s almost identical to SCTableViewControl-
lerActions, except that the action parameters declare an
SCViewController instead of an SCTableViewController. For
example, the same action that fires right before the view con-
troller is dismissed is declared as follows:

viewController.actions.willDismiss = ^(SCViewController *viewControl-
ler)
{
 NSLog(@"viewController is about to be dismissed.");
};

For a list of all the actions available for SCViewControllerActions, please
refer to SCViewControllerAction’s documentation (also available online
at:
http://www.sensiblecocoa.com/documentation/STV30/Classes/SCView
ControllerActions.html)

View controller actions can only be set at a single level, the
view controller level.

77

CHAPTER 3

Themes

Themes is an amazing new feature of
STV 3.0 that automatically styles your en-
tire application using CSS like theme
files. This enables you to completely
change the look and feel of your applica-
tion without touching the code at all!

SECTION 1

Exploring SCTheme

SCTheme is the class responsible for all the framework’s
theme styling magic. Once SCTheme is initialized from a
theme file and assigned to a table view model, everything asso-
ciated with that model is automagically styled, including all de-
tail models and view controllers. It is worth noting here that
STV’s theme styling is not restricted to the framework’s own
elements, but can also style any kind of UI element in your en-
tire application!

To explore themes, lets create a simple application with a
theme file and see how you’re able to instantly style it by
changing the contents of this file. First, start by creating a new
project based on the template we created in the ‘Getting
Started’ chapter. Once you do that, add the following code to
RootViewController.m:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Theme App";

 NSMutableArray *weekDays = [NSMutableArray
arrayWithObjects:@"Mon", @"Tue", @"Wed", @"Thu", @"Fri", @"Sat",
@"Sun", nil];
 SCArrayOfStringsSection *daysSection = [SCArrayOfStringsSection
sectionWithHeaderTitle:@"Week days" items:weekDays];
 [self.tableViewModel addSection:daysSection];
}

Now run the app and you should get something like this:

79

Now lets create the theme file by following the next steps:

1. From Xcode, navigate to File->New->File… and select the
‘Empty’ document template under the ‘Other’ iOS tem-
plates group, then click next.

2. Name the file Theme.sct then click on the Create button
(you can name the file anything you want, but make sure
to use the same name later on when we initialize
SCTheme).

3. Once the file is created, insert the following text into it:

SCTableViewCell
{
 backgroundColor: cyanColor;
 textLabel.font: Chalkduster 14;
}

4. Finally, initialize and add an SCTheme instance to your
model by adding the following line to viewDidLoad:

self.tableViewModel.theme = [SCTheme themeWithPath:@"Theme.sct"];

80

Now running the app again, you should find that it got styled
as follows:

That was easy! However, let’s try and understand what just
happened.

First, we started by adding what we call a theme style to the
Theme.sct file. A theme style is very similar in syntax to how
CSS classes are defined, having a style name that is super-

seded by brackets containing several style attributes. The style
name can be anything you want, but choosing the name of an
existing class automatically styles all elements of this class.
For example, choosing the name of our theme style as ‘SCTa-
bleViewCell’ automatically styled all elements of type SCTa-
bleViewCell in our application.

Next, we placed several attributes for the SCTableViewCell
style, each superseded by a colon and an attribute value:

SCTableViewCell
{
 backgroundColor: cyanColor;
 textLabel.font: Chalkduster 14;
}

Notice that each attribute correspond to an existing property
of the theme style (SCTableViewCell in this case). You can ac-
tually style any property you want provided that its type is sup-
ported by SCTheme (we will discuss all the supported types in
the next section). Even key-path properties are fully sup-
ported! For example, we were able to set ‘textLabel.font’,
which is not a direct property of SCTableViewCell.

So that’s about it! As you can see, this makes styling your ap-
plications extremely trivial. For example, now lets try and
style the table view itself. Since it’s of type UITableView, just
create a theme style with the same name and it should get
automatically styled. Similarly, we’ll do the same thing for the
UINavigationBar control.

81

UINavigationBar
{
 tintColor: orangeColor;
}

UITableView
{
 backgroundColor: greenColor;
}

Running the app now gives us the following:

As you recall, we earlier said you could name the theme style
any name you wish. Doing so enables us to select specific UI
elements and apply the theme style to, instead of having it ap-
plied automatically. For example, let’s create a theme style
called ‘RedCell’ as follows:

RedCell
{
 backgroundColor: redColor;
 textLabel.font: Chalkduster 14;
}

Now let’s assign the theme style of the second cell in the
stringsSection to this style. Setting theme styles is usually
done in the ‘willStyle’ cell action:

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Theme App";

 self.tableViewModel.theme = [SCTheme themeWithPath:@"Theme.sct"];

 NSMutableArray *weekDays = [NSMutableArray
arrayWithObjects:@"Mon", @"Tue", @"Wed", @"Thu", @"Fri", @"Sat",
@"Sun", nil];
 SCArrayOfStringsSection *daysSection = [SCArrayOfStringsSection
sectionWithHeaderTitle:@"Week days" items:weekDays];
 daysSection.cellActions.willStyle = ^(SCTableViewCell *cell, NSIn-
dexPath *indexPath)
 {
 if(indexPath.row == 1) // 2nd cell
 cell.themeStyle = @"RedCell";
 };
 [self.tableViewModel addSection:daysSection];
}

82

And this is what we get now:

Taking all this a step further, we can start assigning alternat-
ing cell styles, which is a very common theme in many applica-
tions. Instead of doing this via the ‘willStyle’ cell action this
time however, we’ll be doing it entirely from the theme file by
setting the SCTableViewSection properties called ‘odd-

CellThemeStyle’ and ‘evenCellThemeStyle’. Here is how the full
Theme.sct file looks like now:

UINavigationBar
{
 tintColor: orangeColor;
}

UITableView
{
 backgroundColor: greenColor;
}

SCTableViewSection
{
 oddCellsThemeStyle: CyanCell;
 evenCellsThemeStyle: OrangeCell;
}

CyanCell
{
 backgroundColor: cyanColor;
 textLabel.font: Chalkduster 14;
}

OrangeCell
{
 backgroundColor: orangeColor;
 textLabel.font: Chalkduster 14;
}

And this is the updated code where no actions are needed any-
more:

83

- (void)viewDidLoad
{
 [super viewDidLoad];

 self.title = @"Theme App";

 self.tableViewModel.theme = [SCTheme themeWithPath:@"Theme.sct"];

 NSMutableArray *weekDays = [NSMutableArray
arrayWithObjects:@"Mon", @"Tue", @"Wed", @"Thu", @"Fri", @"Sat",
@"Sun", nil];
 SCArrayOfStringsSection *daysSection = [SCArrayOfStringsSection
sectionWithHeaderTitle:@"Week days" items:weekDays];
 [self.tableViewModel addSection:daysSection];
}

Running now gives us this beautiful table view:

84

SECTION 2

SCTheme file structure

As we’ve seen in the previous section, an SCTheme file is sim-
ply a collection of theme styles. The syntax of a theme style is
as follows:

/* comment */
ThemeStyleName
{
 // comment
 attribute1: value1;
 attribute2: value2;
 ...
}

Once the theme style is defined, it can be applied to any UI ele-
ment in your application. Furthermore, if the name of the
theme style corresponds to an existing class name, all the ele-
ments of this class will be automatically styled.

There are two restrictions restrictions however to styling UI
elements:

a. The attribute specified in the theme style must actually ex-
ist in the UI element. This is logical enough, as you cannot
set a non-existing attribute.

b. The attribute’s type must be a type supported by
SCTheme. The following is a list of all the supported attrib-
ute types:

• NSString

• CGFloat

• BOOL

• UIColor

• CGColorRef

• UIImage

• UIFont

• UIView

• UITableViewCellSeparatorStyle

The value of each of the above types must be provided in one
or more standard formats. The following sections will discuss
how the values should be formatted to satisfy each type’s syn-
tax.

85

NSString type
The value for an NSString attribute is provided as a simple
string between one or two quotes.

Example:

 detailTextLabel.text: "Hello World!";

CGFloat type
The value for a CGFloat attribute is provided as a regular num-
ber and can include decimal places.

Example:

 height: 60;

BOOL type
The value for a BOOL attribute is provided as any of these con-
stants: TRUE, FALSE, YES, NO (all case insensitive).

Example:

 clipsToBounds: NO;

UIColor type
The value for a UIColor attribute can be provided in any of the
following formats:

• Any UIColor color name constructor.

 backgroundColor: blueColor;

• rgb(redValue, greenValue, blueValue, optionalAlphaValue)

 backgroundColor: rgb(100, 0, 255);

• #hexValue

 backgroundColor: #CC33FF

• A string containing an image resource.

 backgroundColor: "background.png";

86

CGColorRef type
Format is identical to that of the UIColor type.

 layer.borderColor: redColor;

UIImage type
The value for a UIImage attribute can be provided in any of
the following formats:

• A string containing the image resource.

 backgroundImage: "background.png"

• A string containing the image resource and capInsets(top,
left, bottom, right).

 backgroundImage: "background.png" capInsets(0,0,0,0)

UIFont type
The value for a UIFont attribute is provided as the font name
and the font size separated by a space.

 textLabel.font: Courier-Bold 12;

For a good resource of iOS font names, visit: http://iosfonts.com

UIView type
The value for a UIView attribute is provided as a string con-
taining an image resource that will later be loaded into a
UIImageView.

 backgroundView: "background.png";

UITableViewCellSeparatorStyle type
The value for a UITableViewCellSeparatorStyle attribute is
provided as any valid UITableViewCellSeparatorStyle con-
stant.

 separatorStyle: UITableViewCellSeparatorStyleNone;

87

SECTION 3

Third party themes

One of the most fascinating things about STV’s theme files is
that you don’t even need to be the one who developed them!
What this means is that third parties could start developing
their own STV theme files, and using a single line of code, you
could have your application fully styled professionally.

One company that s tar ted doing that i s ca l led
AppDesignVault.com (http://www.appdesignvault.com). For
each of their standard iOS themes, they’ve created a .sct
theme file, ready to be passed to SCTheme and have your ap-
plication immediately styled.

AppDesignVault were kind enough to provide all STV Pro customers with
three full complementary themes, and all STV Std customers with two
full complementary themes. For more information on how to download
your complementary themes, please refer to the ‘Themes’ folder inside
your purchased STV package.

To give you an idea of the power of these theme files, here is
our twitter sample application before applying the theme:

And here it is after applying AppDesignVault’s ‘Foody Theme’
file:

88

http://www.appdesignvault.com
http://www.appdesignvault.com

Feel free to play around with the other complementary theme
files and see for yourself how each completely transforms your
application, all with only a single line of code!

89

CHAPTER 4

Extending STV

Work in progress.

Appendix A

SECTION 1

Migrating your projects to
STV 3.0

Up to STV 3.0, all previous STV releases have been fully back-
ward compatible all the way to our very first version. For rea-
sons discussed in ‘Chapter 1: What’s new in STV 3.0’, we took
the decision to take a completely fresh approach to STV’s inter-
nal architecture. For someone who’s looking forward to mi-
grate their project to STV 3.0, this might seem very worrying.

Fortunately, even though STV’s architecture got a complete
make over, its developer interface remained more or less the
same, and should still be very familiar to anyone who has used
any previous STV version. Having said that, your previous
STV projects still do need to get migrated to STV 3.0, and will
not work out of the box.

To help you get started, we wrote this appendix to serve as a
detailed migration guide. In addition, we also migrated all the
old STV samples and bundled them with the new STV package
(we left the samples as non-ARC projects to demonstrate how
STV can seamlessly work with non-ARC applications).

A general overview of what has changed

1. In general, tasks are now easier to achieve. This means that
you’ll be removing several pieces of unnecessary code that you
usually had to include in your older STV projects.

2. The key-binding method have been completely replaced
with the much more straight forward and robust Dictionary
Binding method. You can see a full example of this in our mi-
grated “Overview App”.

3. Since STV’s new architecture adopts the new concept of a
generic Data Definition (as opposed to the older Class Defini-
tion), most methods that have the word “classDefinition” have
been renamed to just “definition”. In addition, several method
names have changed to become more consistent with the iOS
framework nomenclature (e.g. removing all unnecessary ‘with’
words). To give you an example, the SCArrayOfObjectsSection
method called :

sectionWithHeaderTitle:withItems:withClassDefintion:

 has been renamed to:

sectionWithHeaderTitle:items:itemsDefintion:

4. The SCTableViewCellDelegate protocol has been completely
replaced by STV 3.0’s new Actions feature.

92

General project migration steps

• Completely remove any old STV files.

• Completely remove any import statements that import STV
header files (e.g. #import “SCTableViewModel.h” state-
ments in view controllers).

• Add STV 3.0 to your project, either as a static framework or
in source code format. For a detailed discussion of this,
please refer to ‘Chapter 1: Setting up STV’.

• SCTableViewModel now doesn’t take the view controller as a
parameter during initialization.

 becomes

• Remove any extra ‘with’ from method names (as discussed
earlier in the general overview). Similarly, refactor any meth-
ods with ‘classDefinition’ in their name to become only ‘defi-
nition’. If you’re not sure what methods to change, just try
compiling the project and Xcode should point them out.

• Rename any ‘detailViewWillAppear’ methods to ‘detailView-
WillPresent’. The name change was significant since the
method gets called only the first time the detail view is pre-

sented. Similarly, and ‘detailViewWillDisappear’ methods
should be renamed to ‘detailViewWillDismiss’.

• All custom cells now should descend from SCCustomCell in-
stead of SCControlCell. Descending your cells from SCCon-
trolCell is still technically correct since SCControlCell is it-
self a subclass of SCCustomCell. You should only do that
however when you have a valid reason for using SCControl-
Cell.

• Core Data is now a separate STV framework extension
(called STV+CoreData), and should be added very similarly
to how the main STV framework is added. Furthermore, you
should now be using the new ‘SCEntityDefinition’ instead of
the older SCClassDefinition class to define your Core Data
entities. Referring to our migrated STV 2.0 Core Data sam-
ple should give you a very good starting point.

• When developing for the iPad, a master-detail relationship
should now be established by simply assigning the detail
view to the ‘detailViewController’ property of the master
model. You’ll find a thorough example of this in the mi-
grated STV 2.0 iPad app.

• Finally, STV now has a console warning system, and will
give you warnings regarding any STV syntax inconsistencies
that were not detected by the compiler. To view any poten-
tial STV warnings, please make sure you have Xcode console
window open while running your app.

93

tableModel = [[SCTableViewModel alloc]
initWithTableView:self.tableView withViewController:self];

tableModel = [[SCTableViewModel alloc]
initWithTableView:self.tableView];

Further recommendations

• Consider replacing all your UITableViewController super-
classes with SCTableViewController. While not being strictly
required to use STV, doing this change has many advantages
and will keep your code very simple (as discussed earlier in
the book). If you decide to do so, it should as simple renam-
ing UITableViewController to SCTableViewController in
your view controller’s header file. You should also remove
any SCTableViewModel ivars that you’re added manually to
your view controller and use ‘self.tableViewModel’ instead.
Similarly, consider replacing UIViewController with SCView-
Controller.

• Whenever possible, consider using STV’s new Actions fea-
tures instead of your implemented SCTableViewModelDele-
gates. Your existing delegates should still work fine, but ac-
tions are much simpler and a lot easier to maintain.

94

